Skip to main content
K12 LibreTexts

4.5.6: Product and Quotient Theorems

  • Page ID
    14438
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Product and Quotient Theorems

    Complex numbers are found in real world calculations involving: quantum mechanics, signal analysis, fluid dynamics, control theory, and many other fields.

    In electrical engineering, complex numbers are used for calculations involving impedance (the resistance to electric flow in a circuit).

    Electrical engineers are familiar with the formula:

    \(\ V=V_{0} e^{j \omega t}=V_{0}(\cos \omega t+j \sin \omega t)\)

    by comparing it to the similar expression below, which is explored in this lesson, can you identify the variable j?

    \(\ r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right)\)


    Product and Quotient Theorems

    The Product Theorem

    Since complex numbers can be transformed to polar form, the multiplication of complex numbers can also be done in polar form. Suppose we know z1 = r1 (cos θ1 + i sin θ1) z2 = r2 (cos θ2 + i sin θ2)

    To multiply the two complex numbers in polar form:

    \(\ \begin{array}{l}
    z_{1} \cdot z_{2}=r_{1}\left(\cos \theta_{1}+i \sin \theta_{1}\right) \cdot r_{2}\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
    =r_{1} r_{2}\left(\cos \theta_{1}+i \sin \theta_{1}\right)\left(\cos \theta_{2}+i \sin \theta_{2}\right) \\
    =r_{1} r_{2} \cdot\left(\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}+i^{2} \sin \theta_{1} \sin \theta_{2}\right) \\
    =r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right) \\
    =r_{1} r_{2}\left(\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}+i \cos \theta_{1} \sin \theta_{2}+i \sin \theta_{1} \cos \theta_{2}\right) \\
    =r_{1} r_{2}\left(\left[\cos \theta_{1} \cos \theta_{2}-\sin \theta_{1} \sin \theta_{2}\right]+i\left[\cos \theta_{1} \sin \theta_{2}+\sin \theta_{1} \cos \theta_{2}\right]\right)
    \end{array}\)

    (Use \(\ i^{2}=-1\), gather like terms, factor out i, substitute the angle sum formulas for both sine and cosine)

    \(\ z_{1} \cdot z_{2}=r_{1} r_{2} \operatorname{cis}\left[\left(\theta_{1}+\theta_{2}\right)\right]\)

    This last equation states that the product of two complex numbers in polar form can be obtained by multiplying the polar r values of each of the complex numbers and then multiplying that value by cis of the sum of each of the two angles of the individual complex numbers. This is more concise than the rectangular form for multiplication of complex numbers.

    The Quotient Theorem

    Dividing complex numbers in polar form can be shown using a similar proof that was used to show multiplication of complex numbers. Here we omit the proof and give the result. For z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 + i sin θ2), then \(\ \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \times \operatorname{cis}\left[\theta_{1}-\theta_{2}\right]\)


    Examples

    Example 1

    Earlier, you were asked to identify the variable j in the following formula:

    \(\ V=V_{0} e^{j \omega t}=V_{0}(\cos \omega t+j \sin \omega t)\)

    Solution

    In electrical calculations, the letter I is commonly used to denote current, therefore imaginary numbers are identified with a j.

    Note the similar usage of i in r(cosθ+isinθ).

    Example 2

    Multiply \(\ z_{1} \cdot z_{2}\) where \(\ z_{1}=2+2 i\) and \(\ z_{2}=1-\sqrt{3} i\).

    Solution

    For \(\ z_{1}\),

    \(\ \begin{array}{l}
    r_{1}=\sqrt{2^{2}+2^{2}} \\
    =\sqrt{8} \\
    =2 \sqrt{2}
    \end{array}\)

    and

    \(\ \begin{array}{l}
    \tan \theta_{1}=\frac{2}{2} \\
    \tan \theta_{1}=1 \\
    \theta_{1}=\frac{\pi}{4}
    \end{array}\)

    Note that θ1 is in the first quadrant since a, and b > 0.

    For \(\ z_{2}\),

    \(\ \begin{array}{l}
    r_{2}=\sqrt{1^{2}+(-\sqrt{3})^{2}} \\
    =\sqrt{1+3} \\
    =\sqrt{4} \\
    =2
    \end{array}\)

    and

    \(\ \begin{array}{l}
    \tan \theta_{2}=\frac{-\sqrt{3}}{1} \\
    \theta_{2}=\frac{5 \pi}{3}
    \end{array}\)

    Now we can use the formula \(\ z_{1} \cdot z_{2}=r_{1} \cdot r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)\)

    Substituting gives:

    \(\ \begin{array}{l}
    z_{1} \cdot z_{2}=2 \sqrt{2} \times 2 \operatorname{cis}\left[\frac{\pi}{4}+\frac{5 \pi}{3}\right] \\
    =4 \sqrt{2} \operatorname{cis}\left[\frac{23 \pi}{12}\right]
    \end{array}\)

    So we have

    \(\ z_{1} \cdot z_{2}=4 \sqrt{2}\left(\cos \frac{23 \pi}{12}+i \sin \frac{23 \pi}{12}\right)\)

    Re-writing in approximate decimal form:

    \(\ \begin{array}{l}
    5.656(0.966-0.259 i) \\
    5.46-1.46 i
    \end{array}\)

    If the problem was done using only rectangular units then

    \(\ \begin{array}{l}
    z_{1} \times z_{2}=(2+2 i)(1-\sqrt{3} i) \text { or } \\
    =2-2 \sqrt{3} i+2 i-2 \sqrt{3} i^{2}
    \end{array}\)

    Gathering like terms and using \(\ \mathrm{i}^{2}=-1\)

    \(\ =(2+2 \sqrt{3})-(2 \sqrt{3}+2) i\)

    or

    \(\ 5.46-1.46 i\)

    Example 2

    Using polar multiplication, find the product \(\ (6-2 \sqrt{3} i)(4+4 \sqrt{3} i)\).

    Solution

    Let \(\ z_{1}=6-2 \sqrt{3} i\) and \(\ z_{2}=4+4 \sqrt{3} i\)

    \(\ \begin{array}{l}
    r_{1}=\sqrt{(6)^{2}-(2 \sqrt{3})^{2}} \text { and } r_{2}=\sqrt{(4)^{2}+(4 \sqrt{3})^{2}} \\
    r_{1}=\sqrt{36+12}=\sqrt{48}=4 \sqrt{3} \text { and } r_{2}=\sqrt{16+48}=\sqrt{64}=8
    \end{array}\)

    For \(\ \theta_{1}\), first find \(\ \tan \theta_{r e f}=\left|\frac{y}{x}\right|\)

    \(\ \begin{array}{l}
    \tan \theta_{r e f}=\frac{(2 \sqrt{3})}{6} \\
    \tan \theta_{r e f}=\frac{\sqrt{3}}{3} \\
    \theta_{r e f}=\frac{\pi}{6}
    \end{array}\)

    Since x > 0 and y < 0 we know that θ1 is in the in the 4th quadrant:

    \(\ \theta_{1}=\frac{11 \pi}{6}\)

    For θ2,

    \(\ \begin{array}{l}
    \tan \theta_{r e f}=\frac{(4 \sqrt{3})}{4} \\
    \tan \theta_{r e f}=\sqrt{3} \\
    \theta_{r e f}=\frac{\pi}{3}
    \end{array}\)

    Since θ2 is in the first quadrant,

    \(\ \theta_{2}=\frac{\pi}{3}\)

    Using polar multiplication,

    \(\ \begin{array}{l}
    z_{1} \times z_{2}=4 \sqrt{3} \times 8\left(\text { cis }\left[\frac{11 \pi}{6}+\frac{\pi}{3}\right]\right) \\
    z_{1} \times z_{2}=32 \sqrt{3}\left(\operatorname{cis}\left[\frac{13 \pi}{6}\right]\right)
    \end{array}\)

    subtracting 2π from the augment:

    z_{1} \times z_{2}=32 \sqrt{3}\left(\operatorname{cis}\left[\frac{\pi}{6}\right]\right)

    or in expanded form: \(\ 32 \sqrt{3}\left(\cos \left[\frac{\pi}{6}\right]+i \sin \left[\frac{\pi}{6}\right]\right)\)

    In decimal form this becomes: \(\ 55.426(0.866+0.500 i) \text { or } 48+27.713 i\)

    Check:

    \(\ \begin{array}{l}
    (6-2 \sqrt{3} i)(4+4 \sqrt{3} i)=24+24 \sqrt{3} i-8 \sqrt{3} i-24 i^{2} \\
    =24+16 \sqrt{3} i+24 \\
    =48+27.713 i
    \end{array}\)

    Example 3

    Using polar division, find the quotient of \(\ \frac{z_{1}}{z_{2}}\) given that \(\ z_{1}=5-5 i\) and \(\ z_{2}=-2 \sqrt{3}-2 i\).

    Solution

    For \(\ z_{1}: r_{1}=\sqrt{5^{2}+(-5)^{2}}\) and \(\ \tan \theta_{1}=\frac{-5}{5}, \text { so } \theta_{1}=\frac{7 \pi}{4} \left(4^{th} \text{ quadrant}\right.)\)

    For \(\ z_{2}: r_{2}=\sqrt{(-2 \sqrt{3})^{2}+(-2)^{2}}\) or \(\ \sqrt{16}=4\) and \(\ \tan \theta_{2}=\frac{-2}{(-2 \sqrt{3})}, \text { so } \theta_{2}=\frac{7 \pi}{6}\left(3^{r d} \text{ quadrant}\right.)\)

    Using the formula, \(\ \frac{z_{1}}{z_{2}}=\frac{r_{1}}{r_{2}} \times \operatorname{cis}\left[\theta_{1}-\theta_{2}\right]\) or

    \(\ \begin{array}{l}
    =\frac{5 \sqrt{2}}{4} \times \text { cis }\left[\frac{7 \pi}{4}-\frac{7 \pi}{6}\right] \\
    =\frac{5 \sqrt{2}}{4} \times \text { cis }\left[\frac{7 \pi}{12}\right] \\
    =\frac{5 \sqrt{2}}{4}\left[\cos \frac{7 \pi}{12}+i \sin \frac{7 \pi}{12}\right] \\
    =1.768[-0.259+(0.966) i] \\
    =-0.458+1.708 i
    \end{array}\)

    Check by using the complex conjugate to do the division in rectangular form:

    \(\ \begin{array}{l}
    \frac{5-5 i}{-2 \sqrt{3}-2 i} \cdot \frac{-2 \sqrt{3}+2 i}{-2 \sqrt{3}+2 i}=\frac{-10 \sqrt{3}+10 i+10 \sqrt{3} i-10 i^{2}}{(-2 \sqrt{3})^{2}-(2 i)^{2}} \\
    =\frac{-10 \sqrt{3}+10 i+10 \sqrt{3} i+10}{12+4} \\
    =\frac{(-10 \sqrt{3}+10)+(10+10 \sqrt{3}) i}{16} \\
    =\frac{(-17.3+10)+(10+17.3) i}{16} \\
    =\frac{(-7.3)+(27.3) i}{16} \text { or } \\
    -0.456+1.706 i
    \end{array}\)

    The two radically different approaches yield the same answer. The small difference between the two answers is a result of decimal rounding.

    Example 5

    Find the product: \(\ \left(7\left(\frac{\pi}{6}\right)\right) \cdot\left(5\left(\frac{-\pi}{4}\right)\right)\).

    Solution

    This one is easier than it looks: Recall \(\ z_{1} \cdot z_{2}=r_{1} \cdot r_{2} \operatorname{cis}\left(\theta_{1}+\theta_{2}\right)\).

    \(\ r_{1} \cdot r_{2} \rightarrow 7 \cdot 5=35\)....... By substitution and multplication

    \(\ \theta_{1}+\theta_{2} \rightarrow\left(\frac{\pi}{6}\right)+\left(\frac{-\pi}{4}\right)\)..... Substitute

    \(\ \left(\frac{2 \pi}{12}\right)+\left(\frac{-3 \pi}{12}\right)\)..... Find common denominators

    \(\ \left(\frac{-\pi}{12}\right)\)..... Simplify

    \(\ \therefore 35 \operatorname{cis}\left(\frac{-\pi}{12}\right)\) is the product

    Example 6

    Find the quotient: \(\ \frac{1+2 i}{2-i}\).

    Solution

    First, find the quotient by polar multiplication:

    \(\ \begin{array}{l}
    r_{1}=\sqrt{(1)^{2}+(2)^{2}}=\sqrt{5} \quad\quad\quad r_{2}=\sqrt{(2)^{2}+(-1)^{2}}=\sqrt{5} \\
    \tan \theta_{1}=\frac{2}{1} \\
    \tan \theta_{1}=2 \\
    \theta_{r e f}=1.107 \text { radians }
    \end{array}\)

    since the angle is in the 1st quadrant

    θ1 = 1.107 radians

    for θ2,

    \(\ \begin{array}{l}
    \tan \theta_{2}=\frac{-1}{2} \\
    \tan \theta_{r e f}=\frac{1}{2} \\
    \theta_{r e f}=0.464 \text { radians }
    \end{array}\)

    since θ2 is in the 4th quadrant, between \(\ 4.712\left(\text { or } \frac{3 \pi}{2}\right)\) and \(\ 6.282\) radians (or \(\ 2 \pi\))

    θ2 = 5.820 radians

    Finally, using the division formula,

    \(\ \begin{aligned}
    &\frac{z_{1}}{z_{2}}=\frac{\sqrt{5}}{\sqrt{5}}[\operatorname{cis}(1.107-5.820)]\\
    &\frac{z_{1}}{z_{2}}=[\operatorname{cis}(-4.713)]\\
    &\frac{z_{1}}{z_{2}}=[\cos (-4.713)+i \sin (-4.713)]\\
    &\frac{z_{1}}{z_{2}}=[\cos (1.570)+i \sin (1.570)]\\
    &\text { If we assume that } \frac{\pi}{2}=1.570, \text { then }\\
    &\approx \frac{z_{1}}{z_{2}}=\left[\cos \left(\frac{\pi}{2}\right)+i \sin \left(\frac{\pi}{2}\right)\right]\\
    &\frac{z_{1}}{z_{2}}=0+1 i=i
    \end{aligned}\)


    Review

    1. Find the product using polar form: \(\ (2+2 i)(\sqrt{3}-i)\)
    2. \(\ 2 \operatorname{cis}(40) \cdot 4 \operatorname{cis}(20)\)
    3. Multiply: \(\ 2\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right) \cdot 2\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)\)
    4. \(\ \frac{2 \operatorname{cis}(80)}{6 \operatorname{cis}(200)}\)
    5. Divide: \(\ 3 \operatorname{cis}\left(130^{\circ}\right) \div 4 \operatorname{cis}\left(270^{\circ}\right)\)

    If \(\ z_{1}=7\left(\frac{\pi}{6}\right)\) and \(\ z_{2}=5\left(\frac{-\pi}{4}\right)\) find:

    1. \(\ z_{1} \cdot z_{2}\)
    2. \(\ \left(\frac{z_{1}}{z_{2}}\right)\)
    3. \(\ \left(\frac{z_{2}}{z_{1}}\right)\)

    If \(\ z_{1}=8\left(\frac{\pi}{3}\right)\) and \(\ z_{2}=5\left(\frac{\pi}{6}\right)\) find:

    1. \(\ z_{1} z_{2}\)
    2. \(\ \left(\frac{z_{1}}{z_{2}}\right)\)
    3. \(\ \left(\frac{z_{2}}{z_{1}}\right)\)
    4. \(\ \left(z_{1}\right)^{2}\)
    5. \(\ \left(z_{2}\right)^{3}\)

    Find the products.

    1. Find the product using polar form: \(\ (2+2 i)(\sqrt{3}-i)\)
    2. \(\ 2\left(\cos 40^{\circ}+i \sin 40^{\circ}\right) \cdot 4\left(\cos 20^{\circ}+i \sin 20^{\circ}\right)\)
    3. \(\ 2\left(\cos \frac{\pi}{8}+i \sin \frac{\pi}{8}\right) \cdot 2\left(\cos \frac{\pi}{10}+i \sin \frac{\pi}{10}\right)\)

    Find the quotients.

    1. \(\ 2\left(\cos 80^{\circ}+i \sin 80^{\circ}\right) \div 6\left(\cos 200^{\circ}+i \sin 200^{\circ}\right)\)
    2. \(\ 3 \operatorname{cis}\left(130^{\circ}\right) \div 4 \operatorname{cis}\left(270^{\circ}\right)\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 4.9.


    Vocabulary

    Term Definition
    Complex Conjugate Complex conjugates are pairs of complex binomials. The complex conjugate of a+bi is a−bi. When complex conjugates are multiplied, the result is a single real number.
    complex number A complex number is the sum of a real number and an imaginary number, written in the form a+bi.
    rectangular form The rectangular form of a point or a curve is given in terms of x and y and is graphed on the Cartesian plane.

    This page titled 4.5.6: Product and Quotient Theorems is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?