Skip to main content
K12 LibreTexts

5.2: Sum and Difference Differentiation Rules

  • Page ID
    1238
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Based on your knowledge of the limit definition of the derivative of a function, and the properties of limits discussed in a previous concept, can you make a prediction at this time how the derivative of a sum or difference of two functions should be determined?


    Differentiation of Sums and Differences

    Here are the differentiation rules for the sum and difference of two functions:

    \[\frac{d}{dx}[f(x)+g(x)]= \frac{d}{dx}[f(x)]+ \frac{d}{dx}ddx[g(x) \nonumber\]

    and

    \[\frac{d}{dx}[f(x)−g(x)]=\frac{d}{dx}[f(x)]−\frac{d}{dx}[g(x)] \nonumber\]

    In simpler notation \[(f±g)′=f′±g′ \nonumber\]

    Using the limit properties of previous chapters should allow you to figure out why these differentiation rules apply.

    You often need to apply multiple rules to find the derivative of a function. To find the derivative of f(x)=3x2+2x, you need to apply the sum of derivatives formula and the power rule:

    \[\frac{d}{dx}3x^2+2x]=\frac{d}{dx}[3x^2]+\frac{d}{dx}[2x] \nonumber\]

    = \[3 \frac{d}{dx}[x^2]+2 \frac{d}{dx}[x] \nonumber\]

    = \[3[2x]+2[1] \nonumber\]

    = \[6x+2 \nonumber\]


    Examples

    Example 1

    Earlier, you were asked to make a prediction for the sum and differences of derivatves.

    In a previous concept, you learned that if the limits exist:

    \[ \displaystyle \lim_{x \to a} [f(x)±g(x)] = \lim_{x \to a} f(x)± \lim_{x \to a} g(x), \nonumber\]

    Since the derivative of a function is defined by a limit, ddx[f(x)±g(x)] would be defined by limit applied to [f(x)±g(x)]. Work out the details to see that the above rules make sense.

    Example 2

    Given: t(x)=x−1, what is dt/dx when x=0

    By the difference rule:

    \[ (x−1)′=(x)′−(1)′=0 \nonumber\]

    \[x′=1 \nonumber\]..... By the power rule

    \[1′=0 \nonumber\]..... The derivative of a constant = 0

    So when we evaluate this at x=0, we get 1, since \[1−0=1 \nonumber\]

    Example 3

    Find the derivative: \[ f(x)=x^3−5x^2 \nonumber\]

    Use the difference and power rules to help:

    \[ \frac{d}{dx}[x^3−5x^2]=\frac{d}{dx}[x^3]−5\frac{d}{dx}[x^2] \nonumber\]

    \[ =3x^2−5[2x] \nonumber\]

    \[ =3x^2−10x \nonumber\]

    Example 4

    Given \[ a(x)=−\pi x^{−0.54}+6x^4 \nonumber\] What is \[\frac{d}{dx}a(x)? \nonumber\]

    We'll use the sum and power rules:

    \[ \frac{d}{dx}(−\pi x^{−0.54}+6x^4)=\frac{d}{dx}(−\pi x^{−0.54}+\frac{d}{dx}(6x^4) \nonumber\]…By the sum rule

    \[= -\pi \frac{d}{dx}(x^{−0.54})+6 \frac{d}{dx}(x^4) \nonumber\] …By the Constant - function Product rule

    \[=0.54 \pi x^{−1.54}+24x^3 \nonumber\]…By the power rule


    Review

    For #1-7, find the derivative using the sum/difference rule

    1. \[y=\frac{1}{2}\left(x^{3}-2 x^{2}+1\right)\nonumber\]
    2. \[y=\sqrt{2} x^{3}-\frac{1}{\sqrt{2}} x^{2}+2 x+\sqrt{2}\nonumber\]
    3. \[y=a^{2}-b^{2}+x^{2}-a-b+x\nonumber\] (where $a, b$ are constants)
    4. \[y=x^{-3}+\frac{1}{x^{7}}\nonumber\]
    5. \[y=\sqrt{x}+\frac{1}{\sqrt{x}}\nonumber\]
    6. \[f(x)=(-3 x+4)^{2}\nonumber\]
    7. \[f(x)=-0.93 x^{10}+\left(\pi^{3} x\right)^{\frac{-5}{12}}\nonumber\]
    8. What is \[\frac{d}{d x}(2 x+1)^{2} ?\nonumber\]
    9. Given: \[a(x)=(-5 x+3)^{2}\nonumber\] What is \[\frac{d y}{d x} ?\nonumber\]
    10. \[v(x)=-3 x^{3}+5 x^{2}-2 x-3\nonumber\] What is \[v^{\prime}(0) ?\nonumber\]
    11. \[f(x)=2 x^{2}+3 x+1 .\nonumber\] Find \[f^{\prime}(x)\nonumber\]
    12. \[f(x)=\frac{1}{\sqrt{x}}-\frac{1}{x} .\nonumber\] Find \[f^{\prime}(1)\nonumber\]
    13. \[y=(x+1)(x+2) \cdot\nonumber\] Evaluate \[\frac{d y}{d x}\nonumber\] at \[x=-\frac{1}{2}\nonumber\]
    14. \[f(x)=2 a x^{3}+x^{2} ; f^{\prime}(-2)=0 \nonumber\] Find a
    15. \[f(x)=a\left(x^{2}-5\right) ;\nonumber\] find a so that \[f^{\prime \prime}(5)=20\nonumber\]


    Review (Answers)

    To see the Review answers, open this PDF file and look for section 3.5.


    Vocabulary

    Term Definition
    derivative The derivative of a function is the slope of the line tangent to the function at a given point on the graph. Notations for derivative include f′(x), dydx, y′, dfdx and \frac{df(x)}{dx}.
    differentiable A differentiable function is a function that has a derivative that can be calculated.

    Additional Resources

    Video: Product Rule

    Practice: Sum and Difference Differentiation Rules


    This page titled 5.2: Sum and Difference Differentiation Rules is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?