Skip to main content
K12 LibreTexts

1.9: 30-60-90 Right Triangles

  • Page ID
    14089
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Hypotenuse equals twice the smallest leg, while the larger leg is \(sqrt{3}\) times the smallest.

    One of the two special right triangles is called a 30-60-90 triangle, after its three angles.

    30-60-90 Theorem: If a triangle has angle measures \(30^{\circ}\), \(60^{\circ}\) and \(90^{\circ}\), then the sides are in the ratio \(x: x\sqrt{3}:2x\).

    The shorter leg is always \(x\), the longer leg is always \(x\sqrt{3}\), and the hypotenuse is always \(2x\). If you ever forget these theorems, you can still use the Pythagorean Theorem.

    What if you were given a 30-60-90 right triangle and the length of one of its side? How could you figure out the lengths of its other sides?

    Example \(\PageIndex{1}\)

    Find the value of \(x\) and \(y\).

    f-d_f253e0915a3a06ec0d626be4e6d23bcd759bdf5480908ad2fcd50348+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    Solution

    We are given the longer leg.

    \(\begin{aligned} x\sqrt{3} &=12 \\ x&=12\sqrt{3}\cdot \dfrac{\sqrt{3}}{\sqrt{3}}=12\dfrac{\sqrt{3}}{3}=4\sqrt{3} \\ \text{The hypotenuse is } y&=2(4\sqrt{3})=8\sqrt{3} \end{aligned}\)

    Example \(\PageIndex{2}\)

    Find the value of \(x\) and \(y\).

    f-d_54966f54aaec43bfd1b984a46d9b523714d601e30028766637c91a37+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Solution

    We are given the hypotenuse.

    \(\begin{aligned} 2x&=16 \\ x&=8 \\ \text{The longer leg is } y&=8\cdot \sqrt{3}&=8\sqrt{3} \end{aligned} \)

    Example \(\PageIndex{3}\)

    Find the length of the missing sides.

    f-d_6cf56285ac6d4e253c51867d19ce5f1cf4dd5eb5ccd2c207bc43f65d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Solution

    We are given the shorter leg. If \(x=5\), then the longer leg, \(b=5\sqrt{3}\), and the hypotenuse, \(c=2(5)=10\).

    Example \(\PageIndex{4}\)

    Find the length of the missing sides.

    f-d_382c5686a01a4042d0dc31e15fa8fa9f0185f564b927cd65b93dc128+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Solution

    We are given the hypotenuse. \(2x=20\), so the shorter leg, \(f=\dfrac{20}{2}=10\), and the longer leg, \(g=10\sqrt{3}\).

    Example \(\PageIndex{5}\)

    A rectangle has sides 4 and \(4\sqrt{3}\). What is the length of the diagonal?

    Solution

    If you are not given a picture, draw one.

    f-d_bfba1fae7bcbddafcff19d9ed2213028dcb883213bc48f78ea211ab7+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    The two lengths are \(x\), \(x\sqrt{3}\), so the diagonal would be \(2x\), or \(2(4)=8\).

    If you did not recognize this is a 30-60-90 triangle, you can use the Pythagorean Theorem too.

    \(\begin{aligned} 4^2+(4\sqrt{3})^2&=d^2 \\ 16+48&=d^2 \\ d=\sqrt{64}&=8 \end{aligned}\)

    Review

    1. In a 30-60-90 triangle, if the shorter leg is 5, then the longer leg is __________ and the hypotenuse is ___________.
    2. In a 30-60-90 triangle, if the shorter leg is \(x\), then the longer leg is __________ and the hypotenuse is ___________.
    3. A rectangle has sides of length 6 and \(6\sqrt{3}\). What is the length of the diagonal?
    4. Two (opposite) sides of a rectangle are 10 and the diagonal is 20. What is the length of the other two sides?

    For questions 5-12, find the lengths of the missing sides. Simplify all radicals.


    1. f-d_2facd36bb2fbeedd849497dd107ba534533e6a88784cf8456c710384+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{6}\)
    2. f-d_e677a666e07da6787e00079bd4c8b21ab821694093fbfc62681e204e+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{7}\)
    3. f-d_1f29f072cb73160e7892970886b0c1fcebf8125b24b8ba11683654ae+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{8}\)
    4. f-d_c4d28ed45dc897a6ead6481b0de495a862a1228b6a361f6912b49eef+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{9}\)
    5. f-d_39db2d0dd4c8617180356f22daf33f5009d5e91ecfc8c679fd16c0fb+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{10}\)
    6. f-d_e757021a70a51b662a00b9af57195087812eade33c7db373cf0705d9+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{11}\)
    7. f-d_9c3a73a85f62650dafe5157f8ee7dd59ccc48a4a6631f25d1728a0fc+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)
    8. f-d_6a40679372417fa67db43201a11e0a3f5cb60ec698a15303644d8570+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{13}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 8.6.

    Resources

    Vocabulary

    Term Definition
    30-60-90 Theorem If a triangle has angle measures of 30, 60, and 90 degrees, then the sides are in the ratio \(x : x \sqrt{3} : 2x\)
    30-60-90 Triangle A 30-60-90 triangle is a special right triangle with angles of \(30^{\circ}\), \(60^{\circ}\), and \(90^{\circ}\).
    Hypotenuse The hypotenuse of a right triangle is the longest side of the right triangle. It is across from the right angle.
    Legs of a Right Triangle The legs of a right triangle are the two shorter sides of the right triangle. Legs are adjacent to the right angle.
    Pythagorean Theorem The Pythagorean Theorem is a mathematical relationship between the sides of a right triangle, given by \(a^2+b^2=c^2\), where a and b are legs of the triangle and c is the hypotenuse of the triangle.
    Radical The \(\sqrt{}\), or square root, sign.

    This page titled 1.9: 30-60-90 Right Triangles is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?