Skip to main content
K12 LibreTexts

12.4: Frequency and Pitch of Sound

  • Page ID
    2841
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Figure 12.4.1

    A marching band passes you as it parades down the street. You heard it coming from several blocks away. Now that the different instruments have finally reached you, their distinctive sounds can be heard. The tiny piccolos trill their bird-like high notes, and the big tubas rumble out their booming bass notes. Clearly, some sounds are higher or lower than others.

    High or Low

    How high or low a sound seems to a listener is its pitch. Pitch, in turn, depends on the frequency of sound waves. Wave frequency is the number of waves that pass a fixed point in a given amount of time. High-pitched sounds, like the sounds of the piccolo in the Figure below, have high-frequency waves. Low-pitched sounds, like the sounds of the tuba Figure below, have low-frequency waves.

    The frequency of a sound wave determines the pitch that we hear.
    Figure 12.4.2

    Can You Hear It?

    The frequency of sound waves is measured in hertz (Hz), or the number of waves that pass a fixed point in a second. Human beings can normally hear sounds with a frequency between about 20 Hz and 20,000 Hz. Sounds with frequencies below 20 hertz are called infrasound. Infrasound is too low-pitched for humans to hear. Sounds with frequencies above 20,000 hertz are called ultrasound. Ultrasound is too high-pitched for humans to hear.

    Some other animals can hear sounds in the ultrasound range. For example, dogs can hear sounds with frequencies as high as 50,000 Hz. You may have seen special whistles that dogs—but not people—can hear. The whistles produce sounds with frequencies too high for the human ear to detect. Other animals can hear even higher-frequency sounds. Bats, like the one pictured in the Figure below, can hear sounds with frequencies higher than 100,000 Hz!

    Bats can detect sounds with very high frequencies
    Figure 12.4.3

    Q: Bats use ultrasound to navigate in the dark. Can you explain how?

    A: Bats send out ultrasound waves, which reflect back from objects ahead of them. They sense the reflected sound waves and use the information to detect objects they can’t see in the dark. This is how they avoid flying into walls and trees and also how they find flying insects to eat.

    Use the Violin simulation below to play different musical notes and observe the graph of Frequency vs Amplitude produced by the violin strings vibrating at different tensions:

    Interactive Element

    Summary

    • How high or low a sound seems to a listener is its pitch. Pitch, in turn, depends on the frequency of sound waves.
    • High-frequency sound waves produce high-pitched sounds, and low-frequency sound waves produce low-pitched sounds.
    • Infrasound has wave frequencies too low for humans to hear. Ultrasound has wave frequencies too high for humans to hear.

    Review

    1. What is the pitch of sound?
    2. How is the pitch of sound related to the frequency of sound waves?
    3. Define infrasound and ultrasound.

    Additional Resources

    Study Guide: Waves Study Guide

    Real World Application: Tune-up Time

    Videos:


    This page titled 12.4: Frequency and Pitch of Sound is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License