Skip to main content
K12 LibreTexts

3.4.4: Solving Equations with Double-Angle Identities

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Solve sine, cosine, and tangent of angles multiplied or divided by 2.

    Trig Riddle: I am an angle x such that \(0\leq x<2\pi \). I satisfy the equation \(\sin 2x−\sin x=0\). What angle am I?

    Solve Trigonometric Equations

    We can use the half and double angle formulas to solve trigonometric equations.

    Let's solve the following trigonometric equations.

    1. Solve \(\tan 2x+\tan x=0\) when \(0\leq x<2\pi \).

    Change \(\tan 2x\) and simplify.

    \(\begin{aligned} \tan 2x+\tan x &=0\\ \dfrac{2\tan x}{1−\tan ^2x}+\tan x &=0\\ 2\tan x+\tan x(1−\tan ^2x) &=0\rightarrow \text{Multiply everything by } 1−\tan ^2x \text{ to eliminate denominator. }\\ 2\tan x+\tan x−\tan ^3x&=0 \\ 3\tan x−\tan ^3x&=0 \\ \tan x(3−\tan ^2x)&=0 \end{aligned}\)

    Set each factor equal to zero and solve.

    \(\begin{aligned} & & 3−\tan ^2 x&=0 \\ & & −\tan ^2x&=−3 \\ \tan x&=0 &\text{ and } \qquad \tan ^2x &=3 \\ x&=0 \text{ and } \pi & \tan x&=\pm \sqrt{3} \\ & & x&=\dfrac{\pi}{3},\; \dfrac{2\pi}{3},\; \dfrac{4\pi}{3},\; \dfrac{5 \pi}{3} \end{aligned}\)

    1. Solve \(2\cos \dfrac{x}{2}+1=0\) when \(0\leq x<2\pi \).

    In this case, you do not have to use the half-angle formula. Solve for \(\dfrac{x}{2}\).

    \(\begin{aligned}2\cos \dfrac{x}{2}+1=0 \\ 2\cos \dfrac{x}{2}=−1 \\ \cos \dfrac{x}{2}=−\dfrac{1}{2} \end{aligned}\)

    Now, let’s find \(\cos a=−\dfrac{1}{2}\) and then solve for x by dividing by 2.

    \(\begin{aligned} \dfrac{x}{2}&=\dfrac{2 \pi}{3},\dfrac{4 \pi}{3} \\ &=\dfrac{4 \pi}{3},\; \dfrac{8 \pi}{3} \end{aligned}\)

    Now, the second solution is not in our range, so the only solution is \(x=\dfrac{4 \pi}{3}\).

    1. Solve \(4\sin x\cos x=\sqrt{3} \) for \(0\leq x<2\pi \).

    Pull a 2 out of the left-hand side and use the \(\sin 2x\) formula.

    \begin{aligned} 4\sin x\cos x&=\sqrt{3} \\ 2\cdot 2\sin x\cos x&=\sqrt{3} \\ 2\cdot \sin 2x&=\sqrt{3} \\ \sin 2x&=\dfrac{\sqrt{3} }{2} \\ 2x &=\dfrac{\pi}{3},\; \dfrac{5 \pi}{3},\; \dfrac{7 \pi}{3},\; \dfrac{11 \pi}{3} \\ x&=\dfrac{\pi}{6},\; \dfrac{5 \pi}{6},\; \dfrac{7 \pi}{6},\; \dfrac{11 \pi}{6} \end{aligned}

    Example \(\PageIndex{1}\)

    Earlier, you were asked to find the angle x, where \(0\leq x<2\pi \), such that \(x\) satisfies the equation \(\sin 2x−\sin x=0\).


    Use the double angle formula and simplify.

    \(\begin{aligned} \sin 2x−\sin x&=0 \\ 2\sin x\cos x−\sin x&=0 \\ \sin x(2\cos x−1)&=0 \\ \sin x=0 \text{ OR } \cos x&=\dfrac{1}{2} \end{aligned}\)

    Under the constraint \(0\leq x<2\pi \), \(\sin x=0\) when \(x=0\) or when \(x=\pi \). Under this same constraint, \(\cos x=\dfrac{1}{2}\) when \(x=\dfrac{\pi }{3}\) or when \(x=\dfrac{5 \pi}{3}\).

    Example \(\PageIndex{2}\)

    Solve the following equation for \(0\leq x<2\pi \).

    \(\sin \dfrac{x}{2}=−1\)


    \(\begin{aligned} \sin \dfrac{x}{2}&=−1 \\ \dfrac{x}{2} &=\dfrac{3\pi }{2}\\ x&=3\pi \end{aligned}\)

    From this we can see that there are no solutions within our interval.

    Example \(\PageIndex{3}\)

    Solve the following equation for \(0\leq x<2\pi \).

    \(\cos 2x−\cos x=0\)


    \(\begin{aligned} \cos 2x−\cos x=0 \\ 2\cos 2x−\cos x−1=&0 \\ (2\cos x−1)(\cos x+1)&=0 \end{aligned}\)

    Set each factor equal to zero and solve.

    \(\begin{aligned} 2\cos x−1&=0 \\ 2\cos x&=1 & \cos x+1 &=0\\ \cos x&=\dfrac{1}{2} &\text{ and} \qquad \cos x&=−1\\ x&=\dfrac{\pi }{3},\; \dfrac{5\pi }{3} & x&=\pi \end{aligned}\)


    Solve the following equations for \(0\leq x<2\pi \).

    1. \(\cos x−\cos \dfrac{1}{2} x=0\)
    2. \(\sin 2x\cos x=\sin x\)
    3. \(\cos 3x−\cos ^3x=3\sin ^2x\cos x\)
    4. \(\tan 2x−\tan x=0\)
    5. \(\cos 2x−\cos x=0\)
    6. \(2\cos ^2\dfrac{x}{2}=1\)
    7. \(\tan \dfrac{x}{2}=4\)
    8. \(\cos \dfrac{x}{2}=1+\cos x\)
    9. \(\sin 2x+\sin x=0\)
    10. \(\cos ^2x−\cos 2x=0\)
    11. \(\dfrac{\cos 2x}{\cos ^2x}=1\)
    12. \(\cos 2x−1=\sin ^2x\)
    13. \(\cos 2x=\cos x\)
    14. \(\sin 2x−\cos 2x=1\)
    15. \(\sin ^2x−2=\cos 2x\)
    16. \(\cot x+\tan x=2\csc 2x\)

    Answers for Review Problems

    To see the Review answers, open this PDF file and look for section 14.17.

    This page titled 3.4.4: Solving Equations with Double-Angle Identities is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    CK-12 Foundation
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License