# 6.18: Tangent Lines

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Lines perpendicular to the radius drawn to the point of tangency.

## Tangent Line Theorems

There are two important theorems about tangent lines.

1. Tangent to a Circle Theorem: A line is tangent to a circle if and only if the line is perpendicular to the radius drawn to the point of tangency.

$$\overleftrightarrow{BC}$$ is tangent at point $$B$$ if and only if $$\overleftrightarrow{BC}\perp \overline{AB}$$.

This theorem uses the words “if and only if,” making it a biconditional statement, which means the converse of this theorem is also true.

2. Two Tangents Theorem: If two tangent segments are drawn to one circle from the same external point, then they are congruent.

$$\overline{BC}$$ and $$\overline{DC}$$ have $$C$$ as an endpoint and are tangent; $$\overline{BC}\cong \overline{DC}$$.

What if a line were drawn outside a circle that appeared to touch the circle at only one point? How could you determine if that line were actually a tangent?

Example $$\PageIndex{1}$$

Determine if the triangle below is a right triangle.

Solution

Use the Pythagorean Theorem. $$4\sqrt{10}$$ is the longest side, so it will be $$c$$.

Does

\begin{aligned} 8^2+10^2&= (4\sqrt{10})^2? \\ 64+100&\neq 160\end{aligned}

$$\Delta ABC$$ is not a right triangle. From this, we also find that $$\overline{CB}$$ is not tangent to $$\bigodot A$$.

Example $$\PageIndex{2}$$

If $$D$$ and $$C$$ are the centers and $$AE$$ is tangent to both circles, find $$DC$$.

Solution

$$\overline{AE}\perp \overline{DE}$$ and $$\overline{AE}\perp \overline{AC}$$ and $$\Delta ABC \sim \Delta DBE$$ by AA Similarity.

To find $$DB$$, use the Pythagorean Theorem.

\begin{aligned} 10^2+24^2&=DB^2 \\ 100+576&=676 \\ DB&=\sqrt{676}=26 \end{aligned}

To find $$BC$$, use similar triangles.

$$\dfrac{5}{10}=\dfrac{BC}{26}\rightarrow BC=13. \: DC=DB+BC=26+13=39$$

Example $$\PageIndex{3}$$

$$\overline{CB}$$ is tangent to $$\bigodot A$$ at point $$B$$. Find $$AC$$. Reduce any radicals.

Solution

$$\overline{CB}$$ is tangent, so $$\overline{AB}\perp \overline{CB}$$ and $$\Delta ABC$$ a right triangle. Use the Pythagorean Theorem to find $$AC$$.

\begin{aligned} 5^2+8^2&=AC^2 \\ 25+64&=AC^2 \\ 89&=AC^2 \\ AC&=\sqrt{89}\end{aligned}

Example $$\PageIndex{4}$$

Using the answer from Example A above, find $$DC$$ in $$\bigodot A$$. Round your answer to the nearest hundredth.

Solution

\begin{aligned} DC&=AC−AD \\ DC&=\sqrt{89}−5 \approx 4.43 \end{aligned}

Example $$\PageIndex{5}$$

Find the perimeter of $$\Delta ABC$$.

Solution

$$AE=AD$$, $$EB=BF$$, and $$CF=CD$$. Therefore, the perimeter of

$$\Delta ABC=6+6+4+4+7+7=34$$.

$$\bigodot G$$ is inscribed in $$\Delta ABC$$. A circle is inscribed in a polygon if every side of the polygon is tangent to the circle.

## Review

Determine whether the given segment is tangent to $$\bigodot K$$.

Find the value of the indicated length(s) in $$\bigodot C$$. $$A$$ and $$B$$ are points of tangency. Simplify all radicals.

$$A$$ and $$B$$ are points of tangency for $$\bigodot C$$ and $$\bigodot D$$.

1. Is $$\Delta AEC \sim \Delta BED$$? Why?
2. Find $$CE$$.
3. Find $$BE$$.
4. Find $$ED$$.
5. Find $$BC$$ and $$AD$$.

$$\bigodot A$$ is inscribed in $$BDFH$$.

1. Find the perimeter of $$BDFH$$.
2. What type of quadrilateral is $$BDFH$$? How do you know?
3. Draw a circle inscribed in a square. If the radius of the circle is 5, what is the perimeter of the square?
4. Can a circle be inscribed in a rectangle? If so, draw it. If not, explain.
5. Draw a triangle with two sides tangent to a circle, but the third side is not.
6. Can a circle be inscribed in an obtuse triangle? If so, draw it. If not, explain.
7. Fill in the blanks in the proof of the Two Tangents Theorem.

Given: $$\overline{AB}$$ and $$\overline{CB}$$ with points of tangency at $$A$$ and $$C$$. $$\overline{AD}$$ and $$\overline{DC}$$ are radii.

Prove: $$\overline{AB}\cong \overline{CB}$$

Statement Reason
1. 1.
2. $$\overline{AD}\cong \overline{DC}$$ 2.
3. $$\overline{DA}\perp \overline{AB}$$ and $$\overline{DC}\perp \overline{CB}$$ 3.
4. 4. Definition of perpendicular lines
5. 5. Connecting two existing points
6. $$\Delta ADB$$ and $$\Delta DCB$$ are right triangles 6.
7.$$\overline{DB}\cong\overline{DB}$$ 7.
8.$$\Delta ABD\cong \Delta CBD$$ 8.
9.$$\overline{AB}\cong \overline{CB}$$ 9.
1. Fill in the blanks, using the proof from #21.
1. $$ABCD$$ is a _____________ (type of quadrilateral).
2. The line that connects the ___________ and the external point $$B$$ __________ $$\angle ABC$$.
2. Points $$A$$, $$B$$, and $$C$$ are points of tangency for the three tangent circles. Explain why $$\overline{AT}\cong \overline{BT}\cong \overline{CT}$$.

## Vocabulary

Term Definition
circle The set of all points that are the same distance away from a specific point, called the center.
diameter A chord that passes through the center of the circle. The length of a diameter is two times the length of a radius.
point of tangency The point where the tangent line touches the circle.
radius The distance from the center to the outer rim of a circle.
Tangent The tangent of an angle in a right triangle is a value found by dividing the length of the side opposite the given angle by the length of the side adjacent to the given angle.
Tangent to a Circle Theorem A line is tangent to a circle if and only if the line is perpendicular to the radius drawn to the point of tangency.
Two Tangent Theorem The Two-Tangent Theorem states that if two tangent segments are drawn to one circle from the same external point, then they are congruent.

Interactive Element

Video: Tangent Lines Principles - Basic

Activities: Tangent Lines Discussion Questions

Study Aids: Properties of a Circle Study Guide

Practice: Tangent Lines

Real World: Swing Rides

This page titled 6.18: Tangent Lines is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.