Skip to main content
K12 LibreTexts

2.7.1: Evaluate Relations with Scatter Plots

  • Page ID
    5770
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Scatter Plots

    Often, when real-world data is plotted, the result is a linear pattern. The general direction of the data can be seen, but the data points do not all fall on a line. This type of graph is called a scatter plot. A scatter plot is often used to investigate whether or not there is a relationship or connection between 2 sets of data. The data is plotted on a graph such that one quantity is plotted on the x-axis and one quantity is plotted on the y-axis. The quantity that is plotted on the x-axis is the independent variable, and the quantity that is plotted on the y-axis is the dependent variable. If a relationship does exist between the 2 sets of data, it will be easy to see if the data is plotted on a scatter plot.

    The following scatter plot shows the price of peaches and the number sold:

    Screen Shot 2020-05-12 at 9.49.57 PM.png

    The connection is obvious−when the price of peaches was high, the sales were low, but when the price was low, the sales were high.

    The following scatter plot shows the sales of a weekly newspaper and the temperature:

    Screen Shot 2020-05-12 at 9.51.35 PM.png

    There is no connection between the number of newspapers sold and the temperature.

    Another term used to describe 2 sets of data that have a connection or a relationship is correlation. The correlation between 2 sets of data can be positive or negative, and it can be strong or weak. The following scatter plots will help to enhance this concept.

    Screen Shot 2020-05-12 at 9.52.00 PM.png

    If you look at the 2 sketches that represent a positive correlation, you will notice that the points are around a line that slopes upward to the right. When the correlation is negative, the line slopes downward to the right. The 2 sketches that show a strong correlation have points that are bunched together and appear to be close to a line that is in the middle of the points. When the correlation is weak, the points are more scattered and not as concentrated.

    When correlation exists on a scatter plot, a line of best fit can be drawn on the graph. The line of best fit must be drawn so that the sums of the distances to the points on either side of the line are approximately equal and such that there are an equal number of points above and below the line. Using a clear plastic ruler makes it easier to meet all of these conditions when drawing the line. Another useful tool is a stick of spaghetti, since it can be easily rolled and moved on the graph until you are satisfied with its location. The edge of the spaghetti can be traced to produce the line of best fit. A line of best fit can be used to make estimations from the graph, but you must remember that the line of best fit is simply a sketch of where the line should appear on the graph. As a result, any values that you choose from this line are not very accurate−the values are more of a ballpark figure.

    In the sales of newspapers and the temperature, there was no connection between the 2 data sets. The following sketches represent some other possible outcomes when there is no correlation between data sets:

    Screen Shot 2020-05-12 at 9.52.25 PM.png

    Plotting Points on a Scatter Plot 

    Plot the following points on a scatter plot, with m as the independent variable and n as the dependent variable. Number both axes from 0 to 20. If a correlation exists between the values of m and n, describe the correlation (strong negative, weak positive, etc.).

    Screen Shot 2020-05-12 at 9.53.04 PM.png

    Describing Correlation 

    Describe the correlation, if any, in the following scatter plot:

    Screen Shot 2020-05-12 at 9.53.34 PM.png

    In the above scatter plot, there is a strong positive correlation.

    Drawing a Line of Best Fit

    The following table consists of the marks achieved by 9 students on chemistry and math tests:

    Student A B C D E F G H I
    Chemistry Marks 49 46 35 58 51 56 54 46 53
    Math Marks 29 23 10 41 38 36 31 24 ?

    Plot the above marks on scatter plot, with the chemistry marks on the x-axis and the math marks on the y-axis. Draw a line of best fit, and use this line to estimate the mark that Student I would have made in math had he or she taken the test.

    Screen Shot 2020-05-12 at 9.54.04 PM.png

    If Student I had taken the math test, his or her mark would have been between 32 and 37.

    Points to Consider

    • Can the equation for the line of best fit be used to calculate values?
    • Is any other graphical representation of data used for estimations?

    Examples

    The following table represents the sales of Volkswagen Beetles in Iowa between 1994 and 2003:

    Year 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003
    Beetles Sold 50 60 55 50 70 65 75 65 80 90

    Example 1

    Create a scatter plot and draw the line of best fit for the data. Hint: Let 0 = 1994, 1 = 1995, etc. 

    Screen Shot 2020-05-12 at 10.16.31 PM.png

    Example 2

    Use the graph to predict the number of Beetles that will be sodl in Iowa in the year 2007.

    The year 2007 would actually be the number 13 on the x−axis. The number of beetles sold in this year would be approximately 98 to 100.

    Example 3

    Describe the correlation for the above graph. 

    The correlation of this graph is strong and positive.


    Review 

    1. What is the correlation of a scatter plot that has few points that are not bunched together?
      1. strong
      2. no correlation
      3. weak
      4. negative
    2. What term is used to define the connection between 2 data sets?
      1. relationship
      2. scatter plot
      3. correlation
      4. discrete
    3. Describe the correlation of each of the following graphs:

    Screen Shot 2020-05-12 at 10.17.45 PM.png

    4. Plot the following points on a scatter plot, with m as the independent variable and n as the dependent variable. Number both axes from 0 to 20. If a correlation exists between the values of m and n, describe the correlation (strong negative, weak positive, etc.).

    Screen Shot 2020-05-12 at 10.18.16 PM.png

    The following scatter plot shows the closing prices of 2 stocks at various points in time. A line of best fit has been drawn. Use the scatter plot to answer the following questions.

    Screen Shot 2020-05-12 at 10.18.44 PM.png

    1. How would you describe the correlation between the prices of the 2 stocks?
    2. If the price of stock A is $12.00, what would you expect the price of stock B to be?
    3. If the price of stock B is $47.75, what would you expect the price of stock A to be?

    The following scatter plot shows the hours of exercise per week and resting heart rates for various 30-year-old males. A line of best fit has been drawn. Use the scatter plot to answer the following questions.

    Screen Shot 2020-05-12 at 10.19.09 PM.png

    1. How would you describe the correlation between hours of exercise per week and resting heart rate?
    2. If a 30-year-old male exercises 2 hours per week, what would you expect his resting heart rate to be?
    3. If a 30-year-old male has a resting heart rate of 65 beats per minute, how many hours would you expect him to exercise per week?

    Review (Answers)

    To view the Review answers, open this PDF file and look for section 7.3. 


    Vocabulary

    Term Definition
    correlation Correlation is a statistical method used to determine if there is a connection or a relationship between two sets of data.
    line of best fit A line of best fit is a straight line drawn on a scatter plot such that the sums of the distances to the points on either side of the line are approximately equal and such that there are an equal number of points above and below the line.
    scatter plot A scatter plot is a plot of the dependent variable versus the independent variable and is used to investigate whether or not there is a relationship or connection between 2 sets of data.

    Additional Resources

    PLIX: Play, Learn, Interact, eXplore - Regression and Correlation

    Video: Scatter Plots Principles

    Activities: Scatter Plots Discussion Questions

    Study Aids: Bivariate Data Study Guide

    Lesson Plans: Scatter Plots Lesson Plan


    This page titled 2.7.1: Evaluate Relations with Scatter Plots is shared under a CC BY-NC license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?