# 3.3.2: Simplifying Trigonometric Expressions using Sum and Difference Formulas

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Simplify sine, cosine, and tangent of angles that are added or subtracted.

As Agent Trigonometry you are given this clue: $$\sin\left(\dfrac{\pi}{2}−x\right)$$. How could you simplify this expression to make solving your case easier?

### Simplifying Trigonometric Expressions

We can also use the sum and difference formulas to simplify trigonometric expressions.

The $$\sin a=−\dfrac{3}{5}$$ and $$\cos b=\dfrac{12}{13}$$. a is in the $$3^{rd}$$ quadrant and b is in the $$1^{st}$$. Let's find $$\sin(a+b)$$.

First, we need to find $$\cos a$$ and $$\sin b$$. Using the Pythagorean Theorem, missing lengths are 4 and 5, respectively. So, $$\cos a=−\dfrac{4}{5}$$ because it is in the 3rd quadrant and $$\sin b=\dfrac{5}{13}$$. Now, use the appropriate formulas.

\begin{aligned}\sin(a+b)& =\sin a \cos b+\cos a \sin b \\&=−\dfrac{3}{5}\cdot \dfrac{12}{13}+−\dfrac{4}{5} \cdot \dfrac{5}{13}=−\dfrac{56}{65} \end{aligned}

Now, using the information from the previous problem above, let's find $$\tan(a+b)$$.

From the cosine and sine of $$a$$ and $$b$$, we know that $$\tan a=\dfrac{3}{4}$$ and $$\tan b=\dfrac{5}{12}$$.

\begin{aligned} \tan(a+b)&=\dfrac{\tan a+\tan b}{1−\tan a\tan b} \\&=\dfrac{\dfrac{3}{4}+\dfrac{5}{12}}{1−\dfrac{3}{4}\cdot \dfrac{5}{12}} \\&=\dfrac{\dfrac{14}{12}}{\dfrac{11}{16}}\\&=\dfrac{56}{33}\end{aligned}

Finally, let's simplify $$\cos(\pi −x)$$.

Expand this using the difference formula and then simplify.

\begin{aligned} \cos(\pi −x)&=\cos\pi \cos x+\sin \pi \sin x\\ &=−1\cdot \cos x+0\cdot \sin x \\ &=−\cos x \end{aligned}

##### Example $$\PageIndex{1}$$

Earlier, you were asked to simplify $$\sin\left(\dfrac{\pi}{2}−x \right)$$.

Solution

You can expand the expression using the difference formula and then simplify.

\begin{aligned} \sin\left(\dfrac{\pi}{2}−x \right)&=\sin\dfrac{\pi}{2} \cos x−\cos\dfrac{\pi}{2} \sin x \\ &=1 \cdot cosx−0\cdot \sin x \\&=\cos x \end{aligned}

##### Example $$\PageIndex{2}$$

Using the information from the first problem above (where we found $$\sin(a+b)$$), find $$\cos(a−b)$$.

Solution

\begin{aligned} \cos(a−b)&=\cos a \cos b+\sin a \sin b=−\dfrac{4}{5} \cdot \dfrac{12}{13}+−\dfrac{3}{5} \cdot \dfrac{5}{13} \\ &=−\dfrac{63}{65} \end{aligned}

##### Example $$\PageIndex{3}$$

Simplify $$\tan(x+\pi)$$.

Solution

\begin{aligned} \tan(x+\pi )&=\dfrac{\tan x+\tan\pi}{−\tan x \tan\pi} \\ &=\dfrac{\tan x+0}{1−\tan 0} \\&=\tan x\end{aligned}

## Review

$$\sin a=−\dfrac{8}{17}$$, $$\pi \leq a<\dfrac{3 \pi}{2}$$ and $$\sin b=−\dfrac{1}{2}, \; \dfrac{3 \pi}{2}\leq b<2\pi$$. Find the exact trig values of:

1. $$\sin(a+b)$$
2. $$\cos(a+b)$$
3. $$\sin(a−b)$$
4. $$\tan(a+b)$$
5. $$\cos(a−b)$$
6. $$\tan(a−b)$$

Simplify the following expressions.

1. $$\sin(2\pi −x)$$
2. $$\sin\left(\dfrac{\pi}{2}+x\right)$$
3. $$\cos(x+\pi )$$
4. $$\cos\left(\dfrac{3 \pi}{2}−x\right)$$
5. $$\tan(x+2\pi)$$
6. $$\tan(x−\pi )$$
7. $$\sin\left(\pi 6−x\right)$$
8. $$\tan\left(\dfrac{\pi }{4}+x\right)$$
9. $$\cos\left(x−\dfrac{\pi }{3}\right)$$

Determine if the following trig statements are true or false.

1. $$\sin(\pi −x)=\sin(x−\pi )$$
2. $$\cos(\pi −x)=\cos(x−\pi )$$
3. $$\tan(\pi −x)=\tan(x−\pi )$$