5.5: Chain Rule
- Page ID
- 1241
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The Chain Rule enables us to differentiate a composite function f∘g. But why is there the need to have a special way to determine the derivative of a composite function? Intuitively, it is because the variation of the domain of f is now governed by the function g(x) rather than just by x, and g's rate of change with respect to x should somehow be taken into account. Before proceeding, see if you find effect of g by comparing the derivative of f(x)=x2 with the derivative of f(x)=(5x)2 where g(x)=5x.
The Chain Rule
We want to derive a rule for the derivative of a composite function of the form f∘g in terms of the derivatives of f and g. This rule would allow us to differentiate complicated functions in terms of known derivatives of simpler functions.
The rule that enables this is called the Chain Rule:
If g is a differentiable function at x, and f is differentiable at g(x), then the composition function f∘g=f(g(x)) is differentiable at x. The derivative of the composite function is:
\[ (f∘g)′(x)=f′(g(x))g′(x) \nonumber\]
Or an equivalent statement:
If u=u(x) and f=f(u), then \[ \frac{d}{dx}[f(u)]=f′(u)\frac{du}{dx} \nonumber\]
Or another equivalent statement:
If y is a function of u, and u is a function of x, then
\[ \frac{dy}{dx}=\frac{dy}{du}⋅\frac{du}{dx} \nonumber\]
Apply the chain rule to find the derivative of \[ f(x)=(2x^3−4x^2+5)^2\nonumber\]
Using the chain rule, let \[ u=2x^3−4x^2+5.\nonumber\] Then
\[ \frac{d}{dx}[(2x^2−4x^2+5)^2]=\frac{d}{dx}[u^2] \nonumber\]
\[ =2u\frac{du}{dx} \nonumber\]
\[ =2(2x^3−4x^2+5)(6x^2−8x) \nonumber\]
The problem above is one of the most common types of composite functions. It is a power function of the type
\[ y=[u(x)]^n \nonumber\]
The rule for differentiating such functions is special case of the Chain Rule called the General Power Rule:
If \[ y=[u(x)]^n \nonumber\], then \[\frac{dy}{dx}=n[u(x)]^{n−1}\frac{d}{dx}u(x) \nonumber\]
Examples
Example 1
Earlier, you were asked if you find the effect of g on the derivative by comparing the derivative of f(x)=x2 with the derivative of f(x)=(5x)2 where g(x)=5x. The derivative of f(x)=x2 is f′(x)=2x, and the derivative of f(x)=(5x)2 is f′(x)=2(5x)5=2x⋅25. The effect of g in the composite function is to modify the rate of change of f(x)=x2.
Example 2
What is the slope of the tangent line to the function \[ y=\sqrt{x^2−3x+2} \nonumber\] that passes through point x=3?
We can write \[ y=(x2−3x+2)^{\frac{1}{2}} \nonumber\] This example illustrates the point that n can be any real number including fractions. Using the General Power Rule,
\[ \frac{dy}{dx}=\frac{1}{2}(x^2−3x+2)^{\frac{1}{2}-1}(2x−3) \nonumber\]
\[ =\frac{1}{2}(x^2−3x+2)^{−\frac{1}{2}}(2x−3) \nonumber\]
\[ =\frac{(2x−3)}{2\sqrt{x^2−3x+2}} \nonumber\]
To find the slope of the tangent line, we simply substitute x=3 into the derivative:
\[ \frac{dy}{dx}|_{x=3}=\frac{2(3)−3}{2\sqrt{3^2−3(3)+2}}=\frac{3}{2\sqrt{2}}=\frac{3\sqrt{2}}{4} \nonumber\]
Example 3
Find \[\frac{dy}{dx} \nonumber\] for \[ y=sin^3x \nonumber\]
The function can be written as y=[sinx]3. Thus
\[ \frac{dy}{dx}=\frac{d}{dx}[sinx]^3 \nonumber\]
\[ =3[sinx]^2[cosx] \nonumber\]
\[ =3sinx^2cosx \nonumber\]
Example 4
Find \[\frac{dy}{dx} \nonumber\] for \[ y=[cos(πx^2)]^3 \nonumber\]
This example will show the application of the chain rule multiple times because there are several functions embedded within each other.
The function y can be written in the form
\[ y=(u(w))^3 \nonumber\] where
\[u(w)=cos(w) \nonumber\]
\[w(x)=πx^2 \nonumber\]
Here are the steps for the solution:
\[ \frac{dy}{dx}=\frac{d}{dx}[u(w)^3] \nonumber\]
…Use u and w substitutions
\[ =3⋅u(w)^2⋅\frac{du}{dx} \nonumber\]
.…After using the General Power Rule
\[ =3⋅u(w)^2⋅(\frac{du}{dw}⋅\frac{dw}{dx}) \nonumber\]
…After using the Chain Rule for du/dx
\[ =3⋅u(w)^2⋅[−sin(w)⋅2πx] \nonumber\]
…After evaluating dudw and dwdx
\[ =3[cos(πx^2)]^2⋅(−sin(πx^2)⋅2πx) \nonumber\]
…After substituting for u and w
\[ =−6πx[cos(πx^2)]^2sin(πx^2) \nonumber\]
.…After simplification.
Notice that we first used the General Power Rule and then used the Chain Rule, in the last step, we took the derivative of the argument.
Review
For #1-11, find f′(x).
- \[ f(x)=(2x^2−3x)^{39} \nonumber\]
- \[ f(x)=(x^3−\frac{5}{x^2})^{−3} \nonumber\]
- \[ f(x)=\frac{1}{\sqrt{3x^2−6x+2}} \nonumber\]
- \[ f(x)=sin^3x \nonumber\]
- \[ f(x)=sinx^3 \nonumber\]
- \[ f(x)=sin^3x^3 \nonumber\]
- \[ f(x)=tan(4x^5) \nonumber\]
- \[ f(x)=\frac{4x−sin^2}{2x} \nonumber\]
- \[ f(x)=\frac{sinx}{cos(3x−2)} \nonumber\]
- \[ f(x)=(5x+8)^3(x^3+7x)^{13} \nonumber\]
- \[ f(x)=(\frac{x−3}{2x−5})^3 \nonumber\]
- Find \[ \frac{dy}{dx} \nonumber\] for \[ y=5cos(3x^2−1) \nonumber\]
- Find the derivative of \[ \sqrt{x^3+x^5+89} \nonumber\]
- Find the derivative of sin(sin(sin(x))).
- By definition, any function composed with its inverse is just the identity: f(f−1(x))=x. differentiate both sides of this equation and solve algebraically for the derivative of the inverse.
Vocabulary
Term | Definition |
---|---|
chain rule | The chain rule is the method for computing the derivative of a composite function. It states that for functions f(x) and g(x), (f∘g)′(x)=f′(g(x))g′(x). |
composite function | A composite function is a function h(x) formed by using the output of one function g(x) as the input of another function f(x). Composite functions are written in the form h(x)=f(g(x)) or h=f∘g. |
derivative | The derivative of a function is the slope of the line tangent to the function at a given point on the graph. Notations for derivative include f′(x), dy/dx, y′, df/dx and \frac{df(x)}{dx}. |
Additional Resources
PLIX - Play, Learn, Interact, eXplore - Differentiation: Chain Rule
Video: Chain Rule Introduction
Practice: Chain Rule
Real World: Goodbye Waves