Skip to main content
K12 LibreTexts

4.42: 45-45-90 Right Triangles

  • Page ID
    4983
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Leg times \(\sqrt{2}\) equals hypotenuse.

    A right triangle with congruent legs and acute angles is an Isosceles Right Triangle. This triangle is also called a 45-45-90 triangle (named after the angle measures).

    f-d_d031961d691e6f7822cdfd8647a351c573ffec2d391be3a66c33f43d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    \(\Delta ABC\) is a right triangle with \(m\angle A=90^{\circ}\), \(\overline{AB}\cong \overline{AC}\) and \(m\angle B=m\angle C=45^{\circ}\).

    45-45-90 Theorem: If a right triangle is isosceles, then its sides are in the ratio \(x:x:x\sqrt{2}\). For any isosceles right triangle, the legs are x and the hypotenuse is always \(x\sqrt{2}\).

    What if you were given an isosceles right triangle and the length of one of its sides? How could you figure out the lengths of its other sides?

    Example \(\PageIndex{1}\)

    Find the length of \(x\).

    f-d_99f1d287abd14b0b76cb8421e384a41a2a8c7e039df7b976e95a7455+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Solution

    Use the \(x:x:x\sqrt{2}\) ratio.

    Here, we are given the hypotenuse. Solve for \(x\) in the ratio.

    \(\begin{aligned} x\sqrt{2}&=16 \\ x&=\dfrac{16}{\sqrt{2}}\cdot \dfrac{\sqrt{2}}{\sqrt{2}}=\dfrac{16\sqrt{2}}{2}=8\sqrt{2}\end{aligned}\)

    Example \(\PageIndex{2}\)

    Find the length of \(x\), where \(x\) is the hypotenuse of a 45-45-90 triangle with leg lengths of \(5\sqrt{3}\).

    Solution

    Use the \(x:x:x\sqrt{2}\) ratio.

    \(x=5\sqrt{3}\cdot \sqrt{2}=5\sqrt{6}\)

    Example \(\PageIndex{3}\)

    Find the length of the missing side.

    f-d_eaae0d6f4193383b52eea952d89ad7d0326e67ed47b13b2f2d971c16+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Solution

    Use the \(x:x:x\sqrt{2}\) ratio. \(TV=6\) because it is equal to \(ST\). So, \(SV=6\cdot \sqrt{2}=6\sqrt{2}\).

    Example \(\PageIndex{4}\)

    Find the length of the missing side.

    f-d_3d3f24ccca5492b908cd782520e20675d3ede898c5ec33f64a71392b+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Solution

    Use the \(x:x:x\sqrt{2}\) ratio. \(AB=9\sqrt{2}\) because it is equal to \(AC\). So, \(BC=9\sqrt{2}\cdot \sqrt{2}=9\cdot 2=18\).

    Example \(\PageIndex{5}\)

    A square has a diagonal with length 10, what are the lengths of the sides?

    Solution

    f-d_5fc04f48c4f69c2d691f74e4f651c0f490d14c27053c327d6a10ac8c+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    We know half of a square is a 45-45-90 triangle, so \(10=s\sqrt{2}\).

    \(\begin{aligned} s\sqrt{2}&=10 \\ s&=10\sqrt{2}\cdot \sqrt{2}\sqrt{2}=10\sqrt{2}2=5\sqrt{2}\end{aligned}\)

    Review

    1. In an isosceles right triangle, if a leg is 4, then the hypotenuse is __________.
    2. In an isosceles right triangle, if a leg is \(x\), then the hypotenuse is __________.
    3. A square has sides of length 15. What is the length of the diagonal?
    4. A square’s diagonal is 22. What is the length of each side?

    For questions 5-11, find the lengths of the missing sides. Simplify all radicals.

    1. f-d_ad4ff816a423d2518b3e145ecab0af844148a342cf715f2822839d05+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{6}\)
    2. f-d_2b1b777ada9d469ac1557e5d728dd5cadb32b271a43a171ca1e0acd1+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{7}\)
    3. f-d_fec758b4bed60f787ecf7cc3413a24604f2a8fd6e3e76219c6d788e6+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{8}\)
    4. f-d_1d17718488605d238c4e7fbaeba4ceb9d28cde71fc22c41862df339a+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{9}\)
    5. f-d_f6ca081119433a93c7fcbb9b3787df89f9ef17b991a71184d3c95ec2+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{10}\)
    6. f-d_51a2c6aaf6051cea58e8a5cb038ac539c3bb367e7fb415f9b19fe80e+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{11}\)
    7. f-d_d30d65648789cfd30ec90564840c25e67666fe071515e5642fcb638d+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 8.5.

    Resources

    Vocabulary

    Term Definition
    45-45-90 Theorem For any isosceles right triangle, if the legs are x units long, the hypotenuse is always \(x\sqrt{2}\).
    45-45-90 Triangle A 45-45-90 triangle is a special right triangle with angles of \(45^{\circ}\), \(45^{\circ}\), and \(90^{\circ}\).
    Hypotenuse The hypotenuse of a right triangle is the longest side of the right triangle. It is across from the right angle.
    Legs of a Right Triangle The legs of a right triangle are the two shorter sides of the right triangle. Legs are adjacent to the right angle.
    Radical The \(\sqrt\), or square root, sign.

    Additional Resources

    Interactive Element

    Video: Solving Special Right Triangles

    Activities: 45-45-90 Right Triangles Discussion Questions

    Study Aids: Special Right Triangles Study Guide

    Practice: 45-45-90 Right Triangles

    Real World: Fighting the War on Drugs Using Geometry and Special Triangles


    This page titled 4.42: 45-45-90 Right Triangles is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License