Skip to main content
K12 LibreTexts

8.4: Rotation Symmetry

  • Page ID
    2163
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Rotation less than 360 degrees that carries a shape onto itself.

    Rotational symmetry is present when a figure can be rotated (less than \(360^{\circ}\)) such that it looks like it did before the rotation. The center of rotation is the point a figure is rotated around such that the rotational symmetry holds.

    f-d_72eec9820e716e5be9c494887549618de7e2ecbd3141ccaeba8f4a75+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    For the \(H\), we can rotate it twice, the triangle can be rotated 3 times and still look the same and the hexagon can be rotated 6 times.

    What if you had a six-pointed star and you rotated that star less than \(360^{\circ}\)? If the rotated star looked exactly the same as the original star, what would that say about the star?

    Example \(\PageIndex{1}\)

    Determine if the figure below has rotational symmetry. Find the angle and how many times it can be rotated.

    f-d_91a398b6c92704f92ad86d837fb0bab4a3487c94a973c766c939655c+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Solution

    The pentagon can be rotated 5 times. Because there are 5 lines of rotational symmetry, the angle would be \(\dfrac{360^{\circ}}{5}=72^{\circ}\).

    f-d_593b85448ad28189efef9b47c1a4c1c148e385cc3690d23dcea2ccb1+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)
    f-d_026d45dcad6eabc3f742d1ef2ef96d68ec307755f4a42587854c7f7b+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Example \(\PageIndex{2}\)

    Determine if the figure below has rotational symmetry. Find the angle and how many times it can be rotated.

    f-d_445fd9b29df47f47ab5cc4740294c4d6cb201fd38b1527f8f913405d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    Solution

    The N can be rotated twice. This means the angle of rotation is \(180^{\circ}\).

    f-d_4c3d08a3ad8b56a6b94b128f2d5b32a584c097b5705d626ab472996d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)

    Example \(\PageIndex{3}\)

    Determine if the figure below has rotational symmetry. Find the angle and how many times it can be rotated.

    f-d_80b9928220553a93981ae6dc2350e96909d8da0aa85afa88365b90f2+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)

    Solution

    The checkerboard can be rotated 4 times. There are 4 lines of rotational symmetry, so the angle of rotation is \(\dfrac{360^{\circ}}{4}=90^{\circ}\).

    f-d_f8a2b372815d48f2bb281221f76c08aa6805c5f7f20313ecc22b2fed+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{8}\)
    f-d_8c4b0435f3c16b1aaf318de1cd2d1f159211c4fcafa3acae8f1582d6+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{9}\)

    Example \(\PageIndex{4}\)

    Find the angle of rotation and the number of times each figure can rotate.

    f-d_0d57550b683c6d5e7efe70a95fd17ae54c0d5ebf728ee36749a652e9+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{10}\)

    Solution

    The parallelogram can be rotated twice. The angle of rotation is \(180^{\circ}\).

    Example \(\PageIndex{5}\)

    f-d_ed3b2e99e2970677ee5b39b1d277613215f40ebcb7c3b64acc088d13+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{11}\)

    Solution

    The hexagon can be rotated six times. The angle of rotation is \(60^{\circ}\).

    Review

    1. If a figure has 3 lines of rotational symmetry, it can be rotated _______ times.
    2. If a figure can be rotated 6 times, it has _______ lines of rotational symmetry.
    3. If a figure can be rotated n times, it has _______ lines of rotational symmetry.
    4. To find the angle of rotation, divide \(360^{\circ}\) by the total number of _____________.
    5. Every square has an angle of rotation of _________.

    Determine whether each statement is true or false.

    1. Every parallelogram has rotational symmetry.
    2. Every figure that has line symmetry also has rotational symmetry.

    Determine whether the words below have rotation symmetry.

    1. OHIO
    2. MOW
    3. WOW
    4. KICK
    5. pod

    Find the angle of rotation and the number of times each figure can rotate.

    1. f-d_8e8fda062d75e9ecb53cdada2e8da13d611224cdb3e0e24b5e6eb3b5+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)
    2. f-d_0ddf063d11a522293d8034439d1cecfe336a6599a9badef33e2eabf3+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{13}\)
    3. f-d_a4db0cbf264efb5b00cefe8eb1a6df4043085900f20e02547f833a59+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{14}\)

    Determine if the figures below have rotation symmetry. Identify the angle of rotation.

    1. f-d_376835cf025c472d1329ec4369b35f42823067f61d478973c73f0f92+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)
    2. f-d_25d06df01845e8f83cdb117b68c407675a0fdc9dc7da820e2ba0f439+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{16}\)
    3. f-d_5c68b724e8fe785e9e918521b7593cef3ce44df471bb054ba8a48911+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{17}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 12.2.

    Vocabulary

    Term Definition
    rotational symmetry When a figure can be rotated (less than 360^{\circ}\)) such that it looks like it did before the rotation. The center of rotation is the point a figure is rotated around such that the rotational symmetry holds.
    Center of Rotation In a rotation, the center of rotation is the point that does not move. The rest of the plane rotates around this fixed point.
    Rotation A rotation is a transformation that turns a figure on the coordinate plane a certain number of degrees about a given point without changing the shape or size of the figure.
    Rotation Symmetry A figure has rotational symmetry if it can be rotated less than \(360^{\circ}\) around its center point and look exactly the same as it did before the rotation.
    Symmetry A figure has symmetry if it can be transformed and still look the same.

    Additional Resources

    Interactive Element

    Video: Rotation Symmetry Principles - Basic

    Activities: Rotation Symmetry Discussion Questions

    Study Aids: Symmetry and Tessellations Study Guide

    Practice: Rotation Symmetry

    Real World: This End Up


    This page titled 8.4: Rotation Symmetry is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?