# 8.5: Geometric Translation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Understand translations as movement of every point in a figure the same distance in the same direction. Graph images given preimage and translation.

## Translations

A transformation is an operation that moves, flips, or otherwise changes a figure to create a new figure. A rigid transformation (also known as an isometry or congruence transformation) is a transformation that does not change the size or shape of a figure.

The rigid transformations are translations, reflections, and rotations. The new figure created by a transformation is called the image. The original figure is called the preimage. If the preimage is $$A$$, then the image would be $$A′$$, said “a prime.” If there is an image of $$A′$$, that would be labeled $$A′′$$, said “a double prime.”

A translation is a transformation that moves every point in a figure the same distance in the same direction. For example, this transformation moves the parallelogram to the right 5 units and up 3 units. It is written $$(x,y)\rightarrow (x+5, y+3)$$.

What if you were given the coordinates of a quadrilateral and you were asked to move that quadrilateral 3 units to the left and 2 units down? What would its new coordinates be?

Example $$\PageIndex{1}$$

Triangle $$\Delta ABC$$ has coordinates $$A(3,−1)$$, $$B(7,−5)$$ and $$C(−2,−2)$$. Translate $$\Delta ABC$$ to the left 4 units and up 5 units. Determine the coordinates of $$\Delta A′B′C′$$.

Solution

Graph $$\Delta ABC$$. To translate $$\Delta ABC$$, subtract 4 from each $$x$$ value and add 5 to each $$y$$ value of its coordinates.

\begin{aligned} &A(3,−1)\rightarrow (3−4,−1+5)=A′(−1,4) \\ &B(7,−5)\rightarrow (7−4,−5+5)=B′(3,0) \\ &C(−2,−2)\rightarrow (−2−4,−2+5)=C′(−6,3) \end{aligned}

The rule would be $$(x,y)\rightarrow (x−4, y+5)$$.

Example $$\PageIndex{2}$$

Using the translation $$(x,y)\rightarrow (x+2, y−5)$$, what is the image of $$A(−6, 3)$$?

Solution

$$A′(−4,−2)$$

Example $$\PageIndex{3}$$

Graph square $$S(1,2)$$, $$Q(4,1)$$, $$R(5,4)$$ and $$E(2,5)$$. Find the image after the translation $$(x,y)\rightarrow (x−2,y+3)$$. Then, graph and label the image.

Solution

We are going to move the square to the left 2 and up 3.

\begin{aligned}(x,y)&\rightarrow (x−2,y+3) \\ S(1,2)&\rightarrow S′(−1,5) \\ Q(4,1)&\rightarrow Q′(2,4) \\ R(5,4)&\rightarrow R′(3,7) \\ E(2,5)&\rightarrow E′(0,8)\end{aligned}

Example $$\PageIndex{4}$$

Find the translation rule for $$\Delta TRI$$ to $$\Delta T′R′I′$$.

Solution

Look at the movement from $$T$$ to $$T′$$. The translation rule is $$(x,y)\rightarrow (x+6, y−4)$$.

## Review

Use the translation $$(x,y)\rightarrow (x+5, y−9)$$ for questions 1-7.

1. What is the image of $$A(−1,3)$$?
2. What is the image of $$B(2,5)$$?
3. What is the image of $$C(4,−2)$$?
4. What is the image of $$A′$$?
5. What is the preimage of $$D′(12,7)$$?
6. What is the image of $$A′′$$?
7. Plot $$A$$, $$A′$$, $$A′′$$, and $$A′′′$$ from the questions above. What do you notice?

The vertices of $$\Delta ABC$$ are $$A(−6,−7)$$, $$B(−3,−10)$$ and $$C(−5,2)$$. Find the vertices of $$\Delta A′B′C′$$, given the translation rules below.

1. $$(x,y)\rightarrow (x−2, y−7)$$
2. $$(x,y)\rightarrow (x+11, y+4)$$
3. $$(x,y)\rightarrow (x, y−3)$$
4. $$(x,y)\rightarrow (x−5, y+8)$$
5. $$(x,y)\rightarrow (x+1, y)$$
6. $$(x,y)\rightarrow (x+3, y+10)$$

In questions 14-17, $$\Delta A′B′C′$$ is the image of $$\Delta ABC$$. Write the translation rule.

Use the triangles from #17 to answer questions 18-20.

1. Find the lengths of all the sides of $$\Delta ABC$$.
2. Find the lengths of all the sides of $$\Delta A′B′C′$$.
3. What can you say about $$\Delta ABC$$ and $$\Delta A′B′C′$$? Can you say this for any translation?
4. If $$\Delta A′B′C′$$ was the preimage and $$\Delta ABC$$ was the image, write the translation rule for #14.
5. If $$\Delta A′B′C′$$ was the preimage and $$\Delta ABC$$ was the image, write the translation rule for #15.
6. Find the translation rule that would move $$A$$ to $$A′(0,0)$$, for #16.
7. The coordinates of $$\Delta DEF$$ are $$D(4,−2)$$, $$E(7,−4)$$ and $$F(5,3)$$. Translate $$\Delta DEF$$ to the right 5 units and up 11 units. Write the translation rule.
8. The coordinates of quadrilateral $$QUAD$$ are $$Q(−6,1)$$, $$U(−3,7)$$, $$A(4,−2)$$ and $$D(1,−8)$$. Translate $$QUAD$$ to the left 3 units and down 7 units. Write the translation rule.

Interactive Element

Video: Transformation: Translation Principles - Basic

Activities: Translations Discussion Questions

Study Aids: Types of Transformations Study Guide

Practice: Geometric Translation

This page titled 8.5: Geometric Translation is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.