# 2.3.4: Coterminal Angles

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

Set of angles with the same terminal or end side.

While playing a game with friends, you use a spinner that looks like this:

As you can see, the angle that the spinner makes with the horizontal is $$60^{\circ}$$. Is it possible to represent the angle any other way?

### Coterminal Angles

Consider the angle $$30^{\circ}$$, in standard position.

Now consider the angle $$390^{\circ}$$. We can think of this angle as a full rotation ($$360^{\circ}$$), plus an additional 30 degrees.

Notice that $$390^{\circ}$$ looks the same as $$30^{\circ}$$. Formally, we say that the angles share the same terminal side. Therefore we call the angles co-terminal. Not only are these two angles co-terminal, but there are infinitely many angles that are co-terminal with these two angles. For example, if we rotate another $$360^{\circ}$$, we get the angle $$750^{\circ}$$. Or, if we create the angle in the negative direction (clockwise), we get the angle $$−330^{\circ}$$. Because we can rotate in either direction, and we can rotate as many times as we want, we can continuously generate angles that are co-terminal with $$30^{\circ}$$.

#### Identifying Co-Terminal Angles

For the following questions, determine if the angle is co-terminal with $$45^{\circ}$$.

1. $$−45^{\circ}$$

No, it is not co-terminal with $$45^{\circ}$$

2. $$405^{\circ}$$

Yes, $$405^{\circ}$$ is co-terminal with $$45^{\circ}$$.

3. $$−315^{\circ}$$

Yes, $$−315^{\circ}$$ is co-terminal with $$45^{\circ}$$.

##### Example $$\PageIndex{1}$$

Earlier, you were asked if it is possible to represent the angle any other way.

Solution

You can either think of $$60^{\circ}$$ as $$420^{\circ}$$ if you rotate all the way around the circle once and continue the rotation to where the spinner has stopped, or as $$−300^{\circ}$$ if you rotate clockwise around the circle instead of counterclockwise to where the spinner has stopped.

##### Example $$\PageIndex{2}$$

Find a coterminal angle to $$23^{\circ}$$

Solution

A coterminal angle would be an angle that is at the same terminal place as $$23^{\circ}$$ but has a different value. In this case, $$−337^{\circ}$$ is a coterminal angle.

##### Example $$\PageIndex{3}$$

Find a coterminal angle to $$−90^{\circ}$$

Solution

A coterminal angle would be an angle that is at the same terminal place as −90^{\circ}\) but has a different value. In this case, $$270^{\circ}$$ is a coterminal angle.

##### Example $$\PageIndex{4}$$

Find two coterminal angles to $$70^{\circ}$$ by rotating in the positive direction around the circle.

Solution

Rotating once around the circle gives a coterminal angle of $$430^{\circ}$$. Rotating again around the circle gives a coterminal angle of $$790^{\circ}$$.

### Review

1. Is $$315^{\circ}$$ co-terminal with $$−45^{\circ}$$?
2. Is $$90^{\circ}$$ co-terminal with $$−90^{\circ}$$?
3. Is $$350^{\circ}$$ co-terminal with $$−370^{\circ}$$?
4. Is $$15^{\circ}$$ co-terminal with $$1095^{\circ}$$?
5. Is $$85^{\circ}$$ co-terminal with $$1880^{\circ}$$?

For each diagram, name the angle in 3 ways. At least one way should use negative degrees.

1. Name the angle of the 8 on a standard clock two different ways.
2. Name the angle of the 11 on a standard clock two different ways.
3. Name the angle of the 4 on a standard clock two different ways.
4. Explain how to determine whether or not two angles are co-terminal.
5. How many rotations is $$4680^{\circ}$$?

## Vocabulary

Term Definition
Coterminal Angles A set of coterminal angles are angles with the same terminal side but expressed differently, such as a different number of complete rotations around the unit circle or angles being expressed as positive versus negative angle measurements.