2.6: Conjectures and Counterexamples
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}
( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\id}{\mathrm{id}}
\newcommand{\Span}{\mathrm{span}}
\newcommand{\kernel}{\mathrm{null}\,}
\newcommand{\range}{\mathrm{range}\,}
\newcommand{\RealPart}{\mathrm{Re}}
\newcommand{\ImaginaryPart}{\mathrm{Im}}
\newcommand{\Argument}{\mathrm{Arg}}
\newcommand{\norm}[1]{\| #1 \|}
\newcommand{\inner}[2]{\langle #1, #2 \rangle}
\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}
\newcommand{\vectorA}[1]{\vec{#1}} % arrow
\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow
\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vectorC}[1]{\textbf{#1}}
\newcommand{\vectorD}[1]{\overrightarrow{#1}}
\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}
\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}
\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }
\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}
\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}Educated guesses and examples that disprove them.
A conjecture is an “educated guess” that is based on examples in a pattern. A counterexample is an example that disproves a conjecture.
Suppose you were given a mathematical pattern like h = \dfrac{−16}{t^2}. What if you wanted to make an educated guess, or conjecture, about h?
Use the following information for Examples 1 and 2:
A car salesman sold 5 used cars to five different couples. He noticed that each couple was under 30 years old. The following day, he sold a new, luxury car to a couple in their 60’s. The salesman determined that only younger couples by used cars.
Example \PageIndex{1}
Is the salesman’s conjecture logical? Why or why not?
Solution
It is logical based on his experiences, but is not true.
Example \PageIndex{2}
Can you think of a counterexample?
Solution
A counterexample would be a couple that is 30 years old or older buying a used car.
Example \PageIndex{3}
Here’s an algebraic equation and a table of values for n and t.
t=(n−1)(n−2)(n−3)
n | (n−1)(n−2)(n−3) | t |
---|---|---|
1 | (0)(−1)(−2) | 0 |
2 | (1)(0)(−1) | 0 |
3 | (2)(1)(0) | 0 |
Solution
After looking at the table, Pablo makes this conjecture:
The value of (n−1)(n−2)(n−3) is 0 for any number n.
Is this a true conjecture?
This is not a valid conjecture. If Pablo were to continue the table to n=4, he would have see that (n−1)(n−2)(n−3)=(4−1)(4−2)(4−3)=(3)(2)(1)=6
In this example n=4 is the counterexample.
Example \PageIndex{4}
Arthur is making figures for an art project. He drew polygons and some of their diagonals.

From these examples, Arthur made this conjecture:
If a convex polygon has n sides, then there are n−2 triangles formed when diagonals are drawn from any vertex of the polygon.
Is Arthur’s conjecture correct? Or, can you find a counterexample?
Solution
The conjecture appears to be correct. If Arthur draws other polygons, in every case he will be able to draw n−2 triangles if the polygon has n sides.
Notice that we have not proved Arthur’s conjecture, but only found several examples that hold true. So, at this point, we say that the conjecture is true.
Example \PageIndex{5}
Give a counterexample to this statement: Every prime number is an odd number.
Solution
The only counterexample is the number 2: an even number (not odd) that is prime.
Review
Give a counterexample for each of the following statements.
- If n is a whole number, then n^2 >n.
- All numbers that end in 1 are prime numbers.
- All positive fractions are between 0 and 1.
- Any three points that are coplanar are also collinear.
- All girls like ice cream.
- All high school students are in choir.
- For any angle there exists a complementary angle.
- All teenagers can drive.
- If n is an integer, then n>0.
- All equations have integer solutions.
Review (Answers)
To see the Review answers, open this PDF file and look for section 2.5.
Resources
Vocabulary
Term | Definition |
---|---|
conjecture | A conjecture is an educated guess that is based on examples in a pattern. |
counterexample | A counterexample is an example that disproves a conjecture. |
fraction | A fraction is a part of a whole. A fraction is written mathematically as one value on top of another, separated by a fraction bar. It is also called a rational number. |
Additional Resources
Interactive Element
Video: Inductive Reasoning
Activities: Conjectures and Counterexamples Discussion Questions
Study Aids: Types of Reasoning Study Guide
Practice: Conjectures and Counterexamples
Real World: Conjectures And Counterexamples