Skip to main content
K12 LibreTexts

4.20: Perpendicular Bisectors

  • Page ID
    4817
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Intersect line segments at their midpoints and form 90 degree angles with them.

    Perpendicular Bisector Theorem

    A perpendicular bisector is a line that intersects a line segment at its midpoint and is perpendicular to that line segment, as shown in the construction below.

    f-d_0054a8bbd92b7d92c25102801d5f33916c748b55e3a7e469bc417ab7+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    One important property related to perpendicular bisectors is that if a point is on the perpendicular bisector of a segment, then it is equidistant from the endpoints of the segment. This is called the Perpendicular Bisector Theorem.

    If \(\overleftrightarrow{CD}\perp \overline{AB}\) and \(AD=DB\), then \(AC=CB\).

    f-d_10068b965ade4f8675f76987d02a312d41e954ae88043c7e94606fe0+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    In addition to the Perpendicular Bisector Theorem, the converse is also true.

    Perpendicular Bisector Theorem Converse: If a point is equidistant from the endpoints of a segment, then the point is on the perpendicular bisector of the segment.

    Using the picture above: If \(AC=CB\), then \(\overleftrightarrow{CD}\perp \overline{AB}\) and \(AD=DB\).

    When we construct perpendicular bisectors for the sides of a triangle, they meet in one point. This point is called the circumcenter of the triangle.

    f-d_433867c262a197619126ea70690a13ef49eae5c0113e96b675fe9b58+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    What if you were given \(\Delta FGH\) and told that \(\overleftrightarrow{GJ}\) was the perpendicular bisector of \(\overline{FH}\)? How could you find the length of FG given the length of GH\)?

    Example \(\PageIndex{1}\)

    \(\overleftrightarrow{OQ}\) is the perpendicular bisector of \(\overline{MP}\).

    f-d_d140a87b58ffadd3d36edce320117693b93087c6e3ec495201dc7a79+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Which line segments are equal? Find \(x\). Is \(L\) on \(\overleftrightarrow{OQ}\)? How do you know?

    Solution

    \(ML=LP\), \(MO=OP\), and \(MQ=QP\).

    \(\begin{align*} 4x+3&=11 \\ 4x&=8 \\ x&=2\end{align*} \)

    Yes, \(L\) is on \(\overleftrightarrow{OQ}\) because \(ML=LP\) (the Perpendicular Bisector Theorem Converse).

    Example \(\PageIndex{2}\)

    Determine if \(\overleftrightarrow{ST}\) is the perpendicular bisector of \(\overline{XY}\). Explain why or why not.

    f-d_ba8cd1d238a32e60442c6684b025e2fe8649cf0561aaf7f0133b2a33+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    Solution

    \(\overleftrightarrow{ST}\) is not necessarily the perpendicular bisector of \(\overline{XY}\) because not enough information is given in the diagram. There is no way to know from the diagram if \(\overleftrightarrow{ST}\) will extend to make a right angle with \(\overline{XY}\).

    Example \(\PageIndex{3}\)

    If \(\overleftrightarrow{MO}\)− is the perpendicular bisector of \(\overline{LN}\) and \(LO=8\), what is \(ON\)?

    f-d_593c64e8750b5e1fee95061feecc627266b90ddb0ee3d831b2698bfd+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)

    Solution

    By the Perpendicular Bisector Theorem, \(LO=ON\). So, \(ON=8\).

    Example \(\PageIndex{4}\)

    Find \(x\) and the length of each segment.

    f-d_d62212bf781061578ec8a3d856957327d4d0135362022cc2fab64223+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)

    Solution

    \(\overleftrightarrow{WX}\)− is the perpendicular bisector of \(\overline{XZ}\) and from the Perpendicular Bisector Theorem \(WZ=WY\).

    \(\begin{align*} 2x+11&=4x−5 \\ 16&=2x \\ 8&=x \end{align*}\)

    \(WZ=WY=2(8)+11=16+11=27\).

    Example \(\PageIndex{5}\)

    Find the value of \(x\). \(m\) is the perpendicular bisector of \(AB\).

    f-d_9c98810069114d983c1cbe4082cb1a14714e7aa8bf739d7219e56f75+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{8}\)

    Solution

    By the Perpendicular Bisector Theorem, both segments are equal. Set up and solve an equation.

    \(\begin{align*}3x−8&=2x \\ x&=8 \end{align*} \)

    Review

    For questions 1-4, find the value of \(x\). m\) is the perpendicular bisector of\( AB\).

    1. f-d_b9bf9451d251c95acbbb6a1961fcd96b748e0be2fdd3740c944da7d8+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{9}\)
    2. f-d_8cd75dfc7460340f3113c9d63ed8a56abc601cdc524ddc8e324a22ce+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{10}\)
    3. f-d_e7d129c791238e0651abebf64186631b8c4055a8b9d86a0e55bb6b7e+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{11}\)
    4. f-d_f45df1e4ae448acc0b8925f78ccd009c3884d5936301b9dfea2b0b19+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)

    m is the perpendicular bisector of \(\overline{AB}\).

    f-d_3f4a69c812a036d0c50d4abe9748e12a9d25469844716b4f28208264+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{13}\)
    1. List all the congruent segments.
    2. Is \(C\) on \(m\)? Why or why not?
    3. Is \(D\) on \(m\)? Why or why not?

    For Question 8, determine if \(\overleftrightarrow{ST}\) is the perpendicular bisector of \overline{XY}\). Explain why or why not.

    1. f-d_43003edf4f672614bb3c97bfa99c1eff92007b80b5d254db1c710845+IMAGE_TINY+IMAGE_TINY.pngFigure \(\PageIndex{14}\)
    2. In what type of triangle will all perpendicular bisectors pass through vertices of the triangle?
    3. Fill in the blanks of the proof of the Perpendicular Bisector Theorem.
      f-d_aa0b60973aa71823fadcfc9679c997e77c35e582ee866e4541c2c5eb+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)

    Given: \(\overleftrightarrow{CD}\) is the perpendicular bisector of \(\overline{AB}\)

    Prove: \(\overline{AC}\cong \overline{CB}\)

    Statement Reason
    1. 1.
    2. \(D\) is the midpoint of \(\overline{AB}\) 2.
    3. 3. Definition of a midpoint
    4. \(\angle CDA\) and \(\angle CDB\) are right angles 4.
    5. \(\angle CDA\cong \angle CDB\) 5.
    6. 6. Reflexive PoC
    7. \(\Delta CDA\cong \Delta CDB\) 7.
    8. \(\overline{AC}\cong \overline{CB}\) 8.

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 5.2.

    Vocabulary

    Term Definition
    circumcenter The circumcenter is the point of intersection of the perpendicular bisectors of the sides in a triangle.
    perpendicular bisector A perpendicular bisector of a line segment passes through the midpoint of the line segment and intersects the line segment at \(90^{\circ}\).
    Perpendicular Bisector Theorem Converse If a point is equidistant from the endpoints of a segment, then the point is on the perpendicular bisector of the segment.

    Additional Resources

    Interactive Element

    Video: Perpendicular Bisectors Principles - Basic

    Activites: Perpendicular Bisectors Discussion Questions

    Study Aid: Bisectors, Medians, Altitudes Study Guide

    Practice: Perpendicular Bisectors

    Real World: Perpendicular Bisectors


    This page titled 4.20: Perpendicular Bisectors is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?