Skip to main content
K12 LibreTexts

4.5: Equilateral Triangles

  • Page ID
    2174
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Properties of triangles with three equal sides.

    Equilateral Triangle Theorem: All equilateral triangles are also equiangular. Furthermore, all equiangular triangles are also equilateral.

    f-d_8f7eede1204302418e1424f330dc88db79a35babad10dfc3d161f618+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    If \(\overline{AB}\cong \overline{BC}\cong \overline{AC}\), then \(\angle A\cong \angle B\cong \angle C\). Conversely, if \(\angle A\cong \angle B\cong \angle C\), then \(\overline{AB}\cong \overline{BC}\cong \overline{AC}\).

    What if you were presented with an equilateral triangle and told that its sides measure \(x\), \(y\), and 8? What could you conclude about \(x\) and \(y\)?

    Example \(\PageIndex{1}\)

    Fill in the proof:

    Given: Equilateral \(\Delta RST\) with

    \(\overline{RT}\cong \overline{ST}\cong \overline{RS}\)

    Prove: \(\Delta RST\) is equiangular

    f-d_9ddf3fb72ca471f7e81104a9c522b71b3f419c20b14f5684e902a7c4+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Solution

    Statement Reason
    1. 1. Given
    2. 2. Base Angles Theorem
    3. 3. Base Angles Theorem
    4. 4. Transitive \(PoC\)
    5. \(\Delta RST\) is equiangular 5.
    Statement Reason
    1. \(RT\overline{AB}\cong ST\overline{AB}\cong RS\overline{AB}\) 1. Given
    2. \(\angle R\cong \angle S\) 2. Base Angles Theorem
    3.\(\angle T\cong \angle R\) 3. Base Angles Theorem
    4. \(\angle T\cong \angle S\) 4. Transitive \(PoC\)
    5. \(\Delta RST\) is equiangular 5. Definition of equiangular.

    Example \(\PageIndex{2}\)

    True or false: All equilateral triangles are isosceles triangles.

    Solution

    This statement is true. The definition of an isosceles triangle is a triangle with at least two congruent sides. Since all equilateral triangles have three congruent sides, they fit the definition of an isosceles triangle.

    Example \(\PageIndex{3}\)

    Find the value of \(x\).

    f-d_95e02acc8d554078a2d006667bd2925fa2f21c2b786bcb58dd134570+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Solution

    Because this is an equilateral triangle \(3x−1=11\). Solve for \(x\).

    \(\bgin{align*} 3x−1&=11 \\3x&=12 \\ x&=4 \end{align*}\)

    Example \(\PageIndex{4}\)

    Find the values of \(x\) and \(y\).

    f-d_757dfef69dbac7f1274f934a7c4376800b17932f95c014c09206e2cf+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Solution

    The markings show that this is an equilateral triangle since all sides are congruent. This means all sides must equal \(10\). We have \(x=10\) and \(y+3=10\) which means that \(y=7\).

    Example \(\PageIndex{5}\)

    Two sides of an equilateral triangle are \(2x+5\) units and \(x+13\) units. How long is each side of this triangle?

    Solution

    The two given sides must be equal because this is an equilateral triangle. Write and solve the equation for \(x\).

    \(\egin{align*}2x+5 &=x+13 \\ x&=8 \end{align*}\)

    To figure out how long each side is, plug in 8 for \(x\) in either of the original expressions. \(2(8)+5=21\). Each side is \(21\) units.

    Review

    The following triangles are equilateral triangles. Solve for the unknown variables.

    1. f-d_0adb7d5a8b0314b60309c2d0153f457a7bbd231f66ecbf6cbf41510b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{4}\)
    2. f-d_bdeb8c1215ab7ecd38f484269d64fca795ca246606427e7bf56e6790+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{5}\)
    3. f-d_4abea74266c0ea4a8bc2bce34b66bbb82c1b6aee777b45000b2aed21+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{6}\)
    4. f-d_e03eab28097427c4633c370a4ced664a066622bb29af70897b5174cd+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{7}\)
    5. f-d_da478b1ee7c59bf8fa42350d4a96d2a63fe3244bd15ada46bc7b5595+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{8}\)
    6. f-d_e91d114f6072c81eff5e2f5535f38f23685d37fea11895468e77ef59+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{9}\)
    7. f-d_201d70b852ce102e06cece95004ad13a098f86d61c8850fcc45b7036+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{10}\)
    8. f-d_cca1bca2b3834684df765086cce8c3769bc743c9cffa5b395492f65f+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{11}\)
    9. f-d_d1a56415406441c56f8e0850f1d6efd93897e91abef1eacdbf5e0941+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)
    10. f-d_295e49c70df586726d75b86f3ca0b0e817afe01a5c55ce37c5d5450b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{13}\)
    11. f-d_c7fbb1d1cfd5f8d797cdb28c404226862271aaa81138405364c2777a+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{14}\)
    12. f-d_b205368d9a9088b7107746f8295b25e92e8b47fbe678dc091388590d+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)
    13. f-d_113f83fbe2e5e6184a92f70e1939b869d5088453e9d0c037650f6772+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{16}\)
    14. f-d_9b71c13d2f3abaadca27de8798a2e78845922b21425262bfe46f3249+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{17}\)
    15. Find the measures of \(x\) and \(y\).
    f-d_00f89c1976e1abbd90bedc27193696261f60e7c1d80c9095c882d540+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{18}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 4.11.

    Additional Resources

    Interactive Element

    Video: Equilateral Triangles Principles - Basic

    Activities: Equilateral Triangles Discussion Questions

    Study Aids: Equilateral Triangles Discussion Questions

    Practice: Equilateral Triangles

    Real World: Equilateral Triangles


    This page titled 4.5: Equilateral Triangles is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?