Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

4.5: Equilateral Triangles

( \newcommand{\kernel}{\mathrm{null}\,}\)

Properties of triangles with three equal sides.

Equilateral Triangle Theorem: All equilateral triangles are also equiangular. Furthermore, all equiangular triangles are also equilateral.

f-d_8f7eede1204302418e1424f330dc88db79a35babad10dfc3d161f618+IMAGE_TINY+IMAGE_TINY.png
Figure 4.5.1

If ¯AB¯BC¯AC, then ABC. Conversely, if ABC, then ¯AB¯BC¯AC.

What if you were presented with an equilateral triangle and told that its sides measure x, y, and 8? What could you conclude about x and y?

Example 4.5.1

Fill in the proof:

Given: Equilateral ΔRST with

¯RT¯ST¯RS

Prove: ΔRST is equiangular

f-d_9ddf3fb72ca471f7e81104a9c522b71b3f419c20b14f5684e902a7c4+IMAGE_TINY+IMAGE_TINY.png
Figure 4.5.2

Solution

Statement Reason
1. 1. Given
2. 2. Base Angles Theorem
3. 3. Base Angles Theorem
4. 4. Transitive PoC
5. ΔRST is equiangular 5.
Statement Reason
1. RT¯ABST¯ABRS¯AB 1. Given
2. RS 2. Base Angles Theorem
3.TR 3. Base Angles Theorem
4. TS 4. Transitive PoC
5. ΔRST is equiangular 5. Definition of equiangular.

Example 4.5.2

True or false: All equilateral triangles are isosceles triangles.

Solution

This statement is true. The definition of an isosceles triangle is a triangle with at least two congruent sides. Since all equilateral triangles have three congruent sides, they fit the definition of an isosceles triangle.

Example 4.5.3

Find the value of x.

f-d_95e02acc8d554078a2d006667bd2925fa2f21c2b786bcb58dd134570+IMAGE_TINY+IMAGE_TINY.png
Figure 4.5.3

Solution

Because this is an equilateral triangle 3x1=11. Solve for x.

\boldsymbol{\bgin{align*} 3x−1&=11 \\3x&=12 \\ x&=4 \end{align*}}

Example 4.5.4

Find the values of x and y.

f-d_757dfef69dbac7f1274f934a7c4376800b17932f95c014c09206e2cf+IMAGE_TINY+IMAGE_TINY.png
Figure 4.5.3

Solution

The markings show that this is an equilateral triangle since all sides are congruent. This means all sides must equal 10. We have x=10 and y+3=10 which means that y=7.

Example 4.5.5

Two sides of an equilateral triangle are 2x+5 units and x+13 units. How long is each side of this triangle?

Solution

The two given sides must be equal because this is an equilateral triangle. Write and solve the equation for x.

\boldsymbol{\egin{align*}2x+5 &=x+13 \\ x&=8 \end{align*}}

To figure out how long each side is, plug in 8 for x in either of the original expressions. 2(8)+5=21. Each side is 21 units.

Review

The following triangles are equilateral triangles. Solve for the unknown variables.

  1. f-d_0adb7d5a8b0314b60309c2d0153f457a7bbd231f66ecbf6cbf41510b+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.4
  2. f-d_bdeb8c1215ab7ecd38f484269d64fca795ca246606427e7bf56e6790+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.5
  3. f-d_4abea74266c0ea4a8bc2bce34b66bbb82c1b6aee777b45000b2aed21+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.6
  4. f-d_e03eab28097427c4633c370a4ced664a066622bb29af70897b5174cd+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.7
  5. f-d_da478b1ee7c59bf8fa42350d4a96d2a63fe3244bd15ada46bc7b5595+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.8
  6. f-d_e91d114f6072c81eff5e2f5535f38f23685d37fea11895468e77ef59+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.9
  7. f-d_201d70b852ce102e06cece95004ad13a098f86d61c8850fcc45b7036+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.10
  8. f-d_cca1bca2b3834684df765086cce8c3769bc743c9cffa5b395492f65f+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.11
  9. f-d_d1a56415406441c56f8e0850f1d6efd93897e91abef1eacdbf5e0941+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.12
  10. f-d_295e49c70df586726d75b86f3ca0b0e817afe01a5c55ce37c5d5450b+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.13
  11. f-d_c7fbb1d1cfd5f8d797cdb28c404226862271aaa81138405364c2777a+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.14
  12. f-d_b205368d9a9088b7107746f8295b25e92e8b47fbe678dc091388590d+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.15
  13. f-d_113f83fbe2e5e6184a92f70e1939b869d5088453e9d0c037650f6772+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.16
  14. f-d_9b71c13d2f3abaadca27de8798a2e78845922b21425262bfe46f3249+IMAGE_TINY+IMAGE_TINY.png
    Figure 4.5.17
  15. Find the measures of x and y.
f-d_00f89c1976e1abbd90bedc27193696261f60e7c1d80c9095c882d540+IMAGE_TINY+IMAGE_TINY.png
Figure 4.5.18

Review (Answers)

To see the Review answers, open this PDF file and look for section 4.11.

Additional Resources

Interactive Element

Video: Equilateral Triangles Principles - Basic

Activities: Equilateral Triangles Discussion Questions

Study Aids: Equilateral Triangles Discussion Questions

Practice: Equilateral Triangles

Real World: Equilateral Triangles


This page titled 4.5: Equilateral Triangles is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?