Skip to main content
K12 LibreTexts

5.3: Square and Rectangle Area and Perimeter

  • Page ID
    2155
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Compute edge and coverage measures of rectilinear quadrilaterals, given linear measures.

    Area and Perimeter of Rectangles

    To find the area of a rectangle, calculate \(A=bh\), where \(b\) is the base (width) and \(h\) is the height (length). The perimeter of a rectangle will always be \(P=2b+2h\).

    f-d_0c9a79962fc5723da8c0215d936990f9fea47b63d4511708daa10731+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    If a rectangle is a square, with sides of length s, then perimeter is \(P_{square}=2s+2s=4s\) and area is \(A_{sqaure}=s\cdot s=s^2\).

    f-d_7ca9b8bf62b2e92936dd2e410390a2f666a3a0eef8c17ea45ba02cf8+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    What if you were given a rectangle and the size of its base and height? How could you find the total distance around the rectangle and the amount of space it takes up?

    Example \(\PageIndex{1}\)

    The area of a square is \(75\text{ in}^2\). Find the perimeter.

    Solution

    To find the perimeter, we need to find the length of the sides.

    \(\begin{aligned} A&=s^2=75\text{ in}^2 \\ s&=\sqrt{75}=5\sqrt{3}\text{ in } \end{aligned}\)

    From this, \(P=4(5\sqrt{3})=20\sqrt{3}\text{ in }\)

    Example \(\PageIndex{2}\)

    Draw two different rectangles with an area of \(36\text{ cm^2 }\).

    Solution

    Think of all the different factors of 36. These can all be dimensions of the different rectangles.

    f-d_a010a8c55e067fc941596fc82902aae27eb7d1d59bbd8bfa870e5573+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Other possibilities could be \(6\times 6\), \(2\times 18\), and \(1\times 36\).

    Example \(\PageIndex{3}\)

    Find the area and perimeter of a rectangle with sides \(4\text{ cm }\) by \(9\text{ cm }\).

    f-d_feea629789b7999660f1e278d4abb1a454e6ffd1b9eceb308598ce40+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Solution

    The perimeter is \(4+9+4+9=26\text{ cm }\). The area is \(A=9\cdot 4=36\text{ cm}^2\).

    Example \(\PageIndex{4}\)

    Find the area and perimeter of a square with side \(5\text{ in }\).

    Solution

    The perimeter is \(4(5)=20\:in\) and the area is \(5^2=25\text{ in}^2\).

    Example \(\PageIndex{5}\)

    Find the area and perimeter of a rectangle with sides \(13\text{ m }\) and \(12\text{ m}^2\).

    Solution

    The perimeter is \(2(13)+2(12)=50\text{ m }\). The area is \(13(12)=156\text{ m}^2\).

    Review

    1. Find the area and perimeter of a square with sides of length \(12\text{ in }\).
    2. Find the area and perimeter of a rectangle with height of \(9\text{ cm }\) and base of \(16\text{ cm }\).
    3. Find the area and perimeter of a rectangle if the height is 8 and the base is 14.
    4. Find the area and perimeter of a square if the sides are \(18\text{ ft }\).
    5. If the area of a square is \(81\text{ ft}^2\), find the perimeter.
    6. If the perimeter of a square is \(24\text{ in }\), find the area.
    7. The perimeter of a rectangle is 32. Find two different dimensions that the rectangle could be.
    8. Draw two different rectangles that haven an area of \(90\text{ mm}^2\).
    9. True or false: For a rectangle, the bigger the perimeter, the bigger the area.
    10. Find the perimeter and area of a rectangle with sides \(17\text{ in }\) and \(21\text{ in }\).

    Vocabulary

    Term Definition
    area The amount of space inside a figure. Area is measured in square units.
    perimeter The distance around a shape. The perimeter of any figure must have a unit of measurement attached to it. If no specific units are given (feet, inches, centimeters, etc), write units.
    Area of a Rectangle To find the area '\(A\)' of a rectangle, calculate \(A = bh\), where \(b\) is the base (width) and h is the height (length).
    Perimeter of a Rectangle The perimeter '\(P\)' of a rectangle is equal to twice the base added to twice the height: \(P = 2b + 2h\).

    Additional Resources

    Interactive Element

    Video: Determine the Area of a Rectangle Involving Whole Numbers

    Activities: Area and Perimeter of Rectangles Discussion Questions

    Study Aids: Triangles and Quadrilaterals Study Guide

    Practice: Square and Rectangle Area and Perimeter

    Real World: Perimeter


    This page titled 5.3: Square and Rectangle Area and Perimeter is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?