Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

5.9: Parallelograms

( \newcommand{\kernel}{\mathrm{null}\,}\)

Find unknown angle measurements of quadrilaterals with two pairs of parallel sides.

A parallelogram is a quadrilateral with two pairs of parallel sides.

f-d_ff6ff6ce996bf5f0d715a1f7816d666fd4538d7589e5fa43db6b87bf+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.1

Notice that each pair of sides is marked parallel (for the last two shapes, remember that when two lines are perpendicular to the same line then they are parallel). Parallelograms have a lot of interesting properties.

Facts about Parallelograms

  1. Opposite Sides Theorem: If a quadrilateral is a parallelogram, then both pairs of opposite sides are congruent.

If

f-d_6cc6f1714d92491c4dc1108f4513dd757386dd171c6c30bcc62dbb3a+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.2

then

f-d_368d168609dc045459d5e70faa3765b22eca0f6c4f916be35d17e8ae+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.3

2. Opposite Angles Theorem: If a quadrilateral is a parallelogram, then both pairs of opposite angles are congruent.

If

f-d_75f9c402da32018e3a196be527e867e32a2b2732fdb6667b79e501a7+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.4

then

f-d_38a3a7e2860bd48a289437b11c5d8d38969c1bee2977b985fe32989e+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.5

3. Consecutive Angles Theorem: If a quadrilateral is a parallelogram, then all pairs of consecutive angles are supplementary.

If

f-d_75f9c402da32018e3a196be527e867e32a2b2732fdb6667b79e501a7+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.6

then

f-d_38a3a7e2860bd48a289437b11c5d8d38969c1bee2977b985fe32989e+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.7

mA+mD=180mA+mB=180mB+mC=180mC+mD=180

4. Parallelogram Diagonals Theorem: If a quadrilateral is a parallelogram, then the diagonals bisect each other.

If

f-d_75f9c402da32018e3a196be527e867e32a2b2732fdb6667b79e501a7+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.8

then

f-d_0f402f150856274ce28e896c9006901772509ecee54673eff6843ea6+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.9

What if you were told that FGHI is a parallelogram and you are given the length of FG\) and the measure of F? What can you determine about HI, H, G, and I?

Example 5.9.1

Show that the diagonals of FGHJ bisect each other.

f-d_03a8e7d7267d582bcda6e32549da3b61910abd4aa3983417573f8595+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.10

Solution

Find the midpoint of each diagonal.

\boldsymbol{\begin{aligned}\text{ Midpoint of } \overline{FH}:& \left(\dfrac{−4+6}{2}, \dfrac{5−4}{2}\right)=(1,0.5) \\ \text{ Midpoint of } of\: \overline{GJ}: & \left(\dfrac{3−1}{2}, \dfrac{3−2}{2}\tight)=(1,0.5)\end{aligned}}

Because they are the same point, the diagonals intersect at each other’s midpoint. This means they bisect each other.

Example 5.9.2

Find the measures of a and b in the parallelogram below:

f-d_345c1eb74af71473e0e2933ba2798bd8cc094438b8f45c2dcebd9989+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.11

Solution

Consecutive angles are supplementary so 127+mb=180 which means that mb=53. a and b are alternate interior angles and since the lines are parallel (since its a parallelogram), that means that ma=mb=53.

Example 5.9.3

ABCD is a parallelogram. If mA=56, find the measure of the other angles.

Solution

First draw a picture. When labeling the vertices, the letters are listed, in order.

f-d_c5df69650ecbb0d4710c414d22b150ec22f31e9d7ddb1d0854803dda+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.12

If mA=56, then mC=56 by the Opposite Angles Theorem.

mA+mB=180 by the Consecutive Angles Theorem. 56+mB=180mB=124mD=124 because it is an opposite angle to B

Example 5.9.4

Find the values of x and y.

f-d_bbd796e60f9972dc63a286a56789a9500fb9e460ff1fa19cbbf0f8b5+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.13

Solution

Remember that opposite sides of a parallelogram are congruent. Set up equations and solve.

6x7=2x+94x=16x=4y+3=12y=9

Example 5.9.5

Prove the Opposite Sides Theorem.

f-d_481247021bd2921618edf2f5e05543ff7668412a6a797825b7b69f29+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.14

Solution

Given: ABCD is a parallelogram with diagonal ¯BD

Prove: ¯AB¯DC, ¯AD¯BC

Statement Reason
1. ABCD is a parallelogram with diagonal ¯BD 1. Given
2. ¯AB¯DC, ¯AD¯BC 2. Definition of a parallelogram
3. ABDBDC, ADBDBC 3. Alternate Interior Angles Theorem
4. ¯DB¯DB 4. Reflexive PoC
5. ΔABDΔCDB 5. ASA
6. ¯AB¯DC, ¯AD¯BC 6. CPCTC

The proof of the Opposite Angles Theorem is almost identical.

Review

ABCD is a parallelogram. Fill in the blanks below.

f-d_4c50cdd807989540195ffb2226df7dc09513ff33267308d9f8203ca8+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.15
  1. If AB=6, then CD=______.
  2. If AE=4, then AC=______.
  3. If mADC=80, mDAB=______.
  4. If mBAC=45, mACD=______.
  5. If mCBD=62, mADB=______.
  6. If DB=16, then DE=______.
  7. IfmB=72 in parallelogram ABCD, find the other three angles.
  8. If mS=143 in parallelogram PQRS, find the other three angles.
  9. If ¯AB¯BC in parallelogram ABCD, find the measure of all four angles.
  10. If mF=x in parallelogram EFGH, find the other three angles.

For questions 11-18, find the values of the variable(s). All the figures below are parallelograms.

  1. f-d_ac67dd022466e9db02576fdca241d797010ed4fc03b3fe649b2f0b1f+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.16
  2. f-d_a32e2c3617a37efd77e0d013e3f4788789075409559f44092fb8ff01+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.17
  3. f-d_a973128a397929358d8b4179e3bd7548dcb85fefdd58e86bf3533fec+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.18
  4. f-d_a2e291c76568c99b080cd4707788ff1d9dc6d223aae3be872d751f2c+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.19
  5. f-d_a209b5cd1cf9d73521e65993d910557d2c2f9708605c92a30986abd7+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.20
  6. f-d_98662387d16e923a2f946322721d102169628550b15a697988267d74+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.21
  7. f-d_9680af28a174e6a54198a609c73189aae8f2fd57d2dd8725805de7fd+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.22
  8. f-d_ad9e5078b4dc578e2daaed9eadf826bb808145e64862f78f5713e7fc+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.9.23

Use the parallelogram WAVE to find:

f-d_4e8938772296e11bae4816b25c00cd47a8e5e0b3ea528676c779637a+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.24
  1. mAWE
  2. mESV
  3. mWEA
  4. mAVW

Find the point of intersection of the diagonals to see if EFGH is a parallelogram.

  1. E(1,3),F(3,4),G(5,1),H(1,2)
  2. E(3,2),F(7,0),G(9,4),H(5,4)
  3. E(6,3),F(2,5),G(6,3),H(4,5)
  4. E(2,2),F(4,6),G(6,4),H(4,0)

Fill in the blanks in the proofs below.

  1. Opposite Angles Theorem
f-d_481247021bd2921618edf2f5e05543ff7668412a6a797825b7b69f29+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.25

Given: ABCD is a parallelogram with diagonal ¯BD

Prove: AC

Statement Reason
1. 1. Given
2. ¯AB¯DC, ¯AD¯BC 2.
3. 3. Alternate Interior Angles Theorem
4. 4. Reflexive PoC
5. ΔABDΔCDB 5.
6. AC 6.
  1. Parallelogram Diagonals Theorem
f-d_4c50cdd807989540195ffb2226df7dc09513ff33267308d9f8203ca8+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.26

Given: ABCD is a parallelogram with diagonals ¯BD and ¯AC

Prove: ¯AE¯EC, ¯DE¯EB

Statement Reason
1. 1.
2. 2. Definition of a parallelogram
3. 3. Alternate Interior Angles Theorem
4. ¯AB¯DC 4.
5. 5.
6.¯AE¯EC,¯DE¯EB 6.
  1. Find x, y, and z. (The two quadrilaterals with the same side are parallelograms.)
f-d_af556799a2227aecf648002f19e53209b290e583f53366f957f841e9+IMAGE_TINY+IMAGE_TINY.png
Figure 5.9.27

Vocabulary

Term Definition
parallelogram A quadrilateral with two pairs of parallel sides. A parallelogram may be a rectangle, a rhombus, or a square, but need not be any of the three.

Additional Resources

Interactive Element

Video: Parallelograms Principles - Basic

Activities: Parallelograms Discussion Questions

Study Aids: Parallelograms Study Guide

Practice: Parallelograms

Real World: Parallelograms


This page titled 5.9: Parallelograms is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?