Skip to main content
K12 LibreTexts

5.10: Area of a Parallelogram

  • Page ID
    4994
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Use \(A=bh\) to find area.

    A parallelogram is a quadrilateral whose opposite sides are parallel.

    f-d_c058957aec562e4e5fe22a2699195b513b9ef4fe8103c68d6ee20c5d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    To find the area of a parallelogram, make it into a rectangle.

    f-d_230440f0af3754bd1fb401b5b68a7be4dfc7bc97358f441862c2171f+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    From this, we see that the area of a parallelogram is the same as the area of a rectangle. The area of a parallelogram is \(A=bh\). The height of a parallelogram is always perpendicular to the base. This means that the sides are not the height.

    f-d_e5a6310e7a5ece578f1dbf95797b780865681898f45481c0778db61d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    What if you were given a parallelogram and the size of its base and height? How could you find the amount of space the parallelogram takes up?

    Example \(\PageIndex{1}\)

    Find the area of the parallelogram.

    f-d_124d1912ef31cfddbd02db40621e4aca157d49991cdb9a6efa69687c+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Solution

    Area is \(15(6)=90\text{ un}^2\).

    Example \(\PageIndex{2}\)

    Find the area of the parallelogram with a base of 10 m and a height of 12 m.

    Solution

    Area is 10(12)=120\text{ m}^2\).

    Example \(\PageIndex{3}\)

    Find the area of the parallelogram.

    f-d_6823e5aa0dde3127aa73a6185e89891adea9514113ae48f6cfe82e55+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    Solution

    \(A=15\cdot 8=120 \text{ in}^2\)

    Example \(\PageIndex{4}\)

    If the area of a parallelogram is \(56 \text{ units }^2\) and the base is 4 units, what is the height?

    Solution

    Solve for the height in \(A=bh\).

    \(56\text{ units }=4h\)

    \(14 \text{ units }=h\)

    Example \(\PageIndex{5}\)

    If the height of a parallelogram is 12 m and the area is \(60 m^2\), how wide is the base?

    Solution

    Solve for the base in \(A=bh\).

    \(60 \text{ units } =12b\)

    \(5 \text{ units } =b\)

    Review

    1. Find the area of a parallelogram with height of 20 m and base of 18 m.
    2. Find the area of a parallelogram with height of 12 m and base of 15 m.
    3. Find the area of a parallelogram with height of 40 m and base of 33 m.
    4. Find the area of a parallelogram with height of 32 m and base of 21 m.
    5. Find the area of a parallelogram with height of 25 m and base of 10 m.

    Find the area of the parallelogram.

    1. f-d_ebe24bf41893ea0c38f9deeaf5fc11e0793c8065c7e091f897c1f8fc+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{6}\)
    2. f-d_f65d27e90850c2ff208211bd2a26cb94d73b72b71e2bf1f198ded7d2+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{7}\)
    3. f-d_0b3dc42bc2164bf8b73220a98b6df3dfa0b12f447873141eaad1979c+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{8}\)
    4. f-d_bc3a0915b2398ad854fc788ef9bf5c1b1ac6d5723c0369639096ef62+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{9}\)
    5. f-d_b0dd29b13f1b5f2d0edad5fab64b728b31c852249c62636785f25fd5+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{10}\)
    6. f-d_1543450d92ba636bab53a7fde65865361e41720cfa05900ed1fd7451+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{11}\)
    7. f-d_ccb8c0b08ef3b05572c400a02ad069b5c6637ccad20aac631f331850+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)
    8. If the area of a parallelogram is \(42\text{ units }^2\) and the base is \(6\text{ units }\), what is the height?
    9. If the area of a parallelogram is \(48\text{ units }^2\) and the height is \(6\text{ units }\), what is the base?
    10. If the base of a parallelogram is 9 units and the area is \(108\text{ units }^2\), what is the height?
    11. If the height of a parallelogram is 11 units and the area is \(27.5\text{ units }^2\), what is the base?

    Vocabulary

    Term Definition
    area The amount of space inside a figure. Area is measured in square units.
    perimeter The distance around a shape. The perimeter of any figure must have a unit of measurement attached to it. If no specific units are given (feet, inches, centimeters, etc), write units.
    Parallelogram A parallelogram is a quadrilateral with two pairs of parallel sides.
    Area of a Parallelogram The area of a parallelogram is equal to the base multiplied by the height: \(A = bh\). The height of a parallelogram is always perpendicular to the base (the sides are not the height).

    Additional Resources

    Interactive Element

    Video: Area of a Parallelogram (Whole Numbers)

    Activities: Area of a Parallelogram Discussion Questions

    Study Aids: Triangles and Quadrilaterals Study Guide

    Practice: Area of a Parallelogram

    Real World: Perimeter


    This page titled 5.10: Area of a Parallelogram is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License