Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

5.8: Parallelogram Classification

( \newcommand{\kernel}{\mathrm{null}\,}\)

Rectangles, rhombuses, and squares are parallelograms defined by their diagonals, angles, and sides.

Classifying Parallelograms

Rectangles, rhombuses (also called rhombi) and squares are all more specific versions of parallelograms, also called special parallelograms.

  • A quadrilateral is a rectangle if and only if it has four right (congruent) angles.
f-d_55e51da65a21709104d74390e53f091e33409fbd0fed707a7e86160b+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.1

ABCD is a rectangle if and only if ABCD.

  • A quadrilateral is a rhombus if and only if it has four congruent sides.
f-d_bd0b9c5c4c9f7edf9469dae40a2d7d8fbc7c07b5181868395123308e+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.2

ABCD is a rhombus if and only if ¯AB¯BC¯CD¯AD.

  • A quadrilateral is a square if and only if it has four right angles and four congruent sides. By definition, a square is a rectangle and a rhombus.
f-d_117f8d8c3160d46bee944d23340d5d3b2274351ecb40b72fbc502384+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.3

ABCD is a square if and only if ABCD and ¯AB¯BC¯CD¯AD.

You can always show that a parallelogram is a rectangle, rhombus, or square by using the definitions of these shapes. There are some additional ways to prove parallelograms are rectangles and rhombuses, shown below:

1. A parallelogram is a rectangle if the diagonals are congruent.

f-d_3f84b99d72ec3008797bedd79d89d66a87dd1fd7604ca0f9ecd59e74+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.4

ABCD is parallelogram. If ¯AC¯BD, then ABCD is also a rectangle.

2. A parallelogram is a rhombus if the diagonals are perpendicular.

f-d_226d4522740bbd606e2f9c557d0a6ae466f03a84173c742d6654f998+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.5

ABCD is a parallelogram. If ¯AC¯BD, then ABCD is also a rhombus.

3. A parallelogram is a rhombus if the diagonals bisect each angle.

f-d_9e07c43ec29f52201e20db4381fae8eef2a2568b573cda3020294030+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.6

ABCD is a parallelogram. If ¯AC bisects BAD and BCD and ¯BD bisects ABC and ADC, then ABCD is also a rhombus.

What if you were given a parallelogram and information about its diagonals? How could you use that information to classify the parallelogram as a rectangle, rhombus, and/or square?

Example 5.8.1

Is a rectangle SOMETIMES, ALWAYS, or NEVER a parallelogram? Explain why.

Solution

A rectangle has two sets of parallel sides, so it is ALWAYS a parallelogram.

Example 5.8.2

Is a quadrilateral SOMETIMES, ALWAYS, or NEVER a pentagon? Explain why.

Solution

A quadrilateral has four sides, so it will NEVER be a pentagon with five sides.

Example 5.8.3

What typed of parallelogram are the figures below?

f-d_baef9d45cb8a7cb0757766f5eb7896623452809ee0d287ed3f92cf66+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.7
f-d_19f82e49ccae0c33cd1b41448b5d5091dc9cebdb3098f54898cf74c2+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.8

Solution

For the first figure, all sides are congruent and one angle is 135, so the angles are not congruent. This is a rhombus.

For the second figure, all four angles are congruent but the sides are not. This is a rectangle.

Example 5.8.4

Is a rhombus SOMETIMES, ALWAYS, or NEVER a square? Explain why.

Solution

A rhombus has four congruent sides and a square has four congruent sides and angles. Therefore, a rhombus is a square when it has congruent angles. This means a rhombus is SOMETIMES a square.

Example 5.8.5

List everything you know about the square SQRE.

f-d_51a51c13c90a76da7e03ab078819aec1967135978bc4fdeced2f01c4+IMAGE_TINY+IMAGE_TINY.png
Figure 5.8.9

Solution

A square has all the properties of a parallelogram, rectangle and rhombus.

Properties of a Parallelogram Properties of a Rhombus Properties of a Rectangle
  • ¯SQ¯ER
  • ¯SQ¯ER¯SE¯QR
  • mSER=mSQR=mQSE=mQRE=90
  • ¯SE¯QR
  • ¯SR¯QE
  • SEQQERSQEEQR
  • ¯SR¯QE
  • QSRRSEQRSSRE
  • ¯SA¯AR¯QA¯AE

All the bisected angles are 45.

Review

  1. RACE is a rectangle. Find:
    1. RG
    2. AE
    3. AC
    4. EC
    5. mRAC
    f-d_4329ed2b37515c1b5092bf37ace63d2956e5efacc9fd967aefa280fb+IMAGE_TINY+IMAGE_TINY.pngFigure 5.8.10
  2. DIAM is a rhombus. Find:
    1. MA
    2. MI
    3. DA
    4. mDIA
    5. mMOA
    f-d_ba88dc9166da4e8a6d1d9468c026dec9d3015a1805f65a74908cde4d+IMAGE_TINY+IMAGE_TINY.pngFigure 5.8.11
  3. CUBE is a square. Find:
    1. mUCE
    2. mEYB
    3. mUBY
    4. mUEB
    f-d_3a96ac9b4e6965cbbf65f82f51b72109914ba6fe7f9a174300c1c8aa+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.12

For questions 4-15, determine if the quadrilateral is a parallelogram, rectangle, rhombus, square or none.

  1. f-d_edf879a0303564a5c702961364640e044a60accff89e75af4f8a343c+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.13
  2. f-d_75310111147d6f01b4375b4003f65512f5827713adc560f202b809c5+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.14
  3. f-d_cd8aec02a3bfedbf82fa7ab7706a4d87f5ce06116e6bffe665d33cb1+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.15
  4. f-d_9f77f2e1dc7e368a0a940ab3b2ef25f13b6a5b85ea07048e0d0cc0bf+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.16
  5. f-d_baf0fff29f3aeaf261461153b6005d955d58f658b46bd277ee107e7c+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.17
  6. f-d_22c026132efc2729b47e751b89fb05e5704da9065dfd73fffb819431+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.18
  7. f-d_468c0f4943b8cf7b238a271799a81b6e74f569027fb5f61cd39c6569+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.19
  8. f-d_24cf4de09666de172ddf99cdada314ea94cd79532c17bd2038a6ef5b+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.20
  9. f-d_37d25e5e7482c22988e6203bfa4ce12c4411e4a2d5d8f2deb8720cc2+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.21
  10. f-d_42c64052c5942ec19464501a150e629e9371a976602e14ae858b735f+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.22
  11. f-d_7b54067dac4c1495cfcbd0706ad44c840c577de994d607973c664859+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.23
  12. f-d_d063d4d8a6ac6e6654d3abe605781f168d1198f6d72736f8e7716819+IMAGE_TINY+IMAGE_TINY.png
    Figure 5.8.24

For questions 16-19 determine if the following are ALWAYS, SOMETIME, or NEVER true. Explain your reasoning.

  1. A rectangle is a rhombus.
  2. A square is a parallelogram.
  3. A parallelogram is regular.
  4. A square is a rectangle.

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.5.

Vocabulary

Term Definition
rectangle A parallelogram is a rectangle if and only if it has four right (congruent) angles
rhombus A parallelogram is a rhombus if and only if it has four congruent sides
square A parallelogram is a square if and only if it has four right angles and four congruent sides.
converse If a conditional statement is pq (if p, then q), then the converse is qp (if q, then p. Note that the converse of a statement is not true just because the original statement is true.
Parallelogram A parallelogram is a quadrilateral with two pairs of parallel sides.
Reflexive Property of Congruence ¯AB¯AB or BB

Additional Resources

Interactive Element

Video: Classifying Parallelograms Principles - Basic

Activities: Parallelogram Classification Discussion Questions

Study Aids: Parallelograms Study Guide

Practice: Parallelogram Classification

Real World: Parallelograms


This page titled 5.8: Parallelogram Classification is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?