Skip to main content
K12 LibreTexts

5.8: Parallelogram Classification

  • Page ID
    4992
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Rectangles, rhombuses, and squares are parallelograms defined by their diagonals, angles, and sides.

    Classifying Parallelograms

    Rectangles, rhombuses (also called rhombi) and squares are all more specific versions of parallelograms, also called special parallelograms.

    • A quadrilateral is a rectangle if and only if it has four right (congruent) angles.
    f-d_55e51da65a21709104d74390e53f091e33409fbd0fed707a7e86160b+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    \(ABCD\) is a rectangle if and only if \(\angle A\cong \angle B\cong \angle C\cong \angle D\).

    • A quadrilateral is a rhombus if and only if it has four congruent sides.
    f-d_bd0b9c5c4c9f7edf9469dae40a2d7d8fbc7c07b5181868395123308e+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    \(ABCD\) is a rhombus if and only if \(\overline{AB}\cong \overline{BC} \cong \overline{CD} \cong \overline{AD}\).

    • A quadrilateral is a square if and only if it has four right angles and four congruent sides. By definition, a square is a rectangle and a rhombus.
    f-d_117f8d8c3160d46bee944d23340d5d3b2274351ecb40b72fbc502384+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    \(ABCD\) is a square if and only if \(\angle A\cong \angle B\cong \angle C\cong \angle D\) and \(\overline{AB}\cong \overline{BC} \cong \overline{CD} \cong \overline{AD}\).

    You can always show that a parallelogram is a rectangle, rhombus, or square by using the definitions of these shapes. There are some additional ways to prove parallelograms are rectangles and rhombuses, shown below:

    1. A parallelogram is a rectangle if the diagonals are congruent.

    f-d_3f84b99d72ec3008797bedd79d89d66a87dd1fd7604ca0f9ecd59e74+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    \(ABCD\) is parallelogram. If \(\overline{AC}\cong \overline{BD}\), then \(ABCD\) is also a rectangle.

    2. A parallelogram is a rhombus if the diagonals are perpendicular.

    f-d_226d4522740bbd606e2f9c557d0a6ae466f03a84173c742d6654f998+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    \(ABCD\) is a parallelogram. If \(\overline{AC}\perp \overline{BD}\), then \(ABCD\) is also a rhombus.

    3. A parallelogram is a rhombus if the diagonals bisect each angle.

    f-d_9e07c43ec29f52201e20db4381fae8eef2a2568b573cda3020294030+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)

    \(ABCD\) is a parallelogram. If \(\overline{AC}\) bisects \(\angle BAD\) and \(\angle BCD\) and \(\overline{BD}\) bisects \(\angle ABC\) and \(\angle ADC\), then \(ABCD\) is also a rhombus.

    What if you were given a parallelogram and information about its diagonals? How could you use that information to classify the parallelogram as a rectangle, rhombus, and/or square?

    Example \(\PageIndex{1}\)

    Is a rectangle SOMETIMES, ALWAYS, or NEVER a parallelogram? Explain why.

    Solution

    A rectangle has two sets of parallel sides, so it is ALWAYS a parallelogram.

    Example \(\PageIndex{2}\)

    Is a quadrilateral SOMETIMES, ALWAYS, or NEVER a pentagon? Explain why.

    Solution

    A quadrilateral has four sides, so it will NEVER be a pentagon with five sides.

    Example \(\PageIndex{3}\)

    What typed of parallelogram are the figures below?

    f-d_baef9d45cb8a7cb0757766f5eb7896623452809ee0d287ed3f92cf66+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)
    f-d_19f82e49ccae0c33cd1b41448b5d5091dc9cebdb3098f54898cf74c2+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{8}\)

    Solution

    For the first figure, all sides are congruent and one angle is \(135^{\circ}\), so the angles are not congruent. This is a rhombus.

    For the second figure, all four angles are congruent but the sides are not. This is a rectangle.

    Example \(\PageIndex{4}\)

    Is a rhombus SOMETIMES, ALWAYS, or NEVER a square? Explain why.

    Solution

    A rhombus has four congruent sides and a square has four congruent sides and angles. Therefore, a rhombus is a square when it has congruent angles. This means a rhombus is SOMETIMES a square.

    Example \(\PageIndex{5}\)

    List everything you know about the square \(SQRE\).

    f-d_51a51c13c90a76da7e03ab078819aec1967135978bc4fdeced2f01c4+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{9}\)

    Solution

    A square has all the properties of a parallelogram, rectangle and rhombus.

    Properties of a Parallelogram Properties of a Rhombus Properties of a Rectangle
    • \(\overline{SQ}\parallel \overline{ER}\)
    • \(\overline{SQ}\cong \overline{ER}\cong \overline{SE}\cong \overline{QR}\)
    • \(m\angle SER=m\angle SQR=m\angle QSE=m\angle QRE=90^{\circ}\)
    • \(\overline{SE}\parallel \overline{QR}\)
    • \(\overline{SR}\perp \overline{QE}\)
    • \(\angle SEQ\cong \angle QER\cong \angle SQE\cong \angle EQR\)
    • \(\overline{SR}\cong \overline{QE}\)
    • \(\angle QSR\cong \angle RSE\cong \angle QRS\cong \angle SRE\)
    • \(\overline{SA}\cong \overline{AR}\cong \overline{QA}\cong \overline{AE}\)

    All the bisected angles are \(45^{\circ}\).

    Review

    1. \(RACE\) is a rectangle. Find:
      1. \(RG\)
      2. \(AE\)
      3. \(AC\)
      4. \(EC\)
      5. \(m\angle RAC\)
      f-d_4329ed2b37515c1b5092bf37ace63d2956e5efacc9fd967aefa280fb+IMAGE_TINY+IMAGE_TINY.pngFigure \(\PageIndex{10}\)
    2. \(DIAM\) is a rhombus. Find:
      1. \(MA\)
      2. \(MI\)
      3. \(DA\)
      4. \(m\angle DIA\)
      5. \(m\angle MOA\)
      f-d_ba88dc9166da4e8a6d1d9468c026dec9d3015a1805f65a74908cde4d+IMAGE_TINY+IMAGE_TINY.pngFigure \(\PageIndex{11}\)
    3. \(CUBE\) is a square. Find:
      1. \(m\angle UCE\)
      2. \(m\angle EYB\)
      3. \(m\angle UBY\)
      4. \(m\angle UEB\)
      f-d_3a96ac9b4e6965cbbf65f82f51b72109914ba6fe7f9a174300c1c8aa+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)

    For questions 4-15, determine if the quadrilateral is a parallelogram, rectangle, rhombus, square or none.

    1. f-d_edf879a0303564a5c702961364640e044a60accff89e75af4f8a343c+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{13}\)
    2. f-d_75310111147d6f01b4375b4003f65512f5827713adc560f202b809c5+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{14}\)
    3. f-d_cd8aec02a3bfedbf82fa7ab7706a4d87f5ce06116e6bffe665d33cb1+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)
    4. f-d_9f77f2e1dc7e368a0a940ab3b2ef25f13b6a5b85ea07048e0d0cc0bf+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{16}\)
    5. f-d_baf0fff29f3aeaf261461153b6005d955d58f658b46bd277ee107e7c+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{17}\)
    6. f-d_22c026132efc2729b47e751b89fb05e5704da9065dfd73fffb819431+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{18}\)
    7. f-d_468c0f4943b8cf7b238a271799a81b6e74f569027fb5f61cd39c6569+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{19}\)
    8. f-d_24cf4de09666de172ddf99cdada314ea94cd79532c17bd2038a6ef5b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{20}\)
    9. f-d_37d25e5e7482c22988e6203bfa4ce12c4411e4a2d5d8f2deb8720cc2+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{21}\)
    10. f-d_42c64052c5942ec19464501a150e629e9371a976602e14ae858b735f+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{22}\)
    11. f-d_7b54067dac4c1495cfcbd0706ad44c840c577de994d607973c664859+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{23}\)
    12. f-d_d063d4d8a6ac6e6654d3abe605781f168d1198f6d72736f8e7716819+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{24}\)

    For questions 16-19 determine if the following are ALWAYS, SOMETIME, or NEVER true. Explain your reasoning.

    1. A rectangle is a rhombus.
    2. A square is a parallelogram.
    3. A parallelogram is regular.
    4. A square is a rectangle.

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 6.5.

    Vocabulary

    Term Definition
    rectangle A parallelogram is a rectangle if and only if it has four right (congruent) angles
    rhombus A parallelogram is a rhombus if and only if it has four congruent sides
    square A parallelogram is a square if and only if it has four right angles and four congruent sides.
    converse If a conditional statement is \(p\rightarrow q\) (if \(p\), then \(q\)), then the converse is \(q\rightarrow p\) (if \(q\), then \(p\). Note that the converse of a statement is not true just because the original statement is true.
    Parallelogram A parallelogram is a quadrilateral with two pairs of parallel sides.
    Reflexive Property of Congruence \(\overline{AB}\cong \overline{AB}\) or \(\angle B\cong \angle B\)

    Additional Resources

    Interactive Element

    Video: Classifying Parallelograms Principles - Basic

    Activities: Parallelogram Classification Discussion Questions

    Study Aids: Parallelograms Study Guide

    Practice: Parallelogram Classification

    Real World: Parallelograms


    This page titled 5.8: Parallelogram Classification is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?