Skip to main content
K12 LibreTexts

3.8: Angles and Perpendicular Lines

  • Page ID
    4770
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Lines that intersect at a 90 degree or right angle.

    Two lines are perpendicular when they intersect to form a \(90^{\circ}\) angle. Below, \(l\perp \overline{AB}\).

    f-d_8125409784124bab9c2c0fceb926ed757b6e3ba610cca07d5a1d6342+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    In the definition of perpendicular the word “line” is used. However, line segments, rays and planes can also be perpendicular. The image below shows two parallel planes, with a third blue plane that is perpendicular to both of them.

    f-d_5854c70c8c90f356282e7a92d61625096e87ff939ae22f3638b65479+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Basic Facts about Perpendicular Lines

    Theorem #1: If \(l\parallel m\) and \(n\perp l\), then \(n\perp m\).

    f-d_d2c6aa2ac725d0e31f44eb383da6b059f9c2673048f4cc002fe66e7c+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Theorem #2: If \(l\perp n\) and \(n\perp m\), then \(l\parallel m\).

    f-d_d2c6aa2ac725d0e31f44eb383da6b059f9c2673048f4cc002fe66e7c+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Postulate: For any line and a point not on the line, there is one line perpendicular to this line passing through the point. There are infinitely many lines that pass through \(A\), but only one that is perpendicular to \(l\).

    f-d_e4a15e358672ae2a892ede6e8122b6027c16964db04faf18af887512+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    What if you were given a pair of lines that intersect each other at a \(90^{\circ}\) angle? What terminology would you use to describe such lines?

    Example \(\PageIndex{1}\)

    Determine the measure of \(\angle 1\).

    f-d_32ac4d177c20bfb1bba068795dde896762fb82d8471b8ef957336e8f+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)

    Solution

    We know that both parallel lines are perpendicular to the transversal.

    \(m\angle 1=90^{\circ}\).

    Example \(\PageIndex{2}\)

    Find \(m\angle 1\).

    f-d_bd4feefa1f3cdc2e90d654bd3bdc943f84602023d479ee8e02278d3c+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)

    Solution

    The two adjacent angles add up to \(90^{\circ}\), so \(l\perp m\).

    \(m\angle 1=90^{\circ}\)

    because it is a vertical angle to the pair of adjacent angles and vertical angles are congruent.

    Example \(\PageIndex{3}\)

    Which of the following is the best example of perpendicular lines: Latitude on a Globe, Opposite Sides of a Picture Frame, Fence Posts, or Adjacent Sides of a Picture Frame?

    Solution

    The best example would be adjacent sides of a picture frame. Remember that adjacent means next to and sharing a vertex. The adjacent sides of a picture frame meet at a \(90^{\circ}\) angle and so these sides are perpendicular.

    Example \(\PageIndex{4}\)

    Is \(\overleftrightarrow{SO} \perp \overrightarrow{GD}\)?

    f-d_fd71597669ae3a94dfc5dd3f05f09e51c17232305cd2aa7bd907957a+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{8}\)

    Solution

    \(\angle OGD\cong \angle SGD\) and the angles form a linear pair. This means both angles are \(90^{\circ}\), so the lines are perpendicular.

    Example \(\PageIndex{5}\)

    Write a 2-column proof to prove Theorem #1. Note: You need to understand corresponding angles in order to understand this proof. If you have not yet learned corresponding angles, be sure to check out that concept first, or skip this example for now.

    Given: \(l\parallel m\), \(l\perp n\)

    Prove: \(n\perp m\)

    f-d_430720902eede3308265bc4feb427740745e0c596d766a38a6fc468e+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{9}\)

    Solution

    Statement Reason
    1. \(l\parallel m\), \(l\perp n\) 1. Given
    2. \(\angle 1\), \(\angle 2\), \(\angle 3\), and \(\angle 4 are right angles\) 2. Definition of perpendicular lines
    3. \(m\angle 1=90^{\circ}\) 3. Definition of a right angle
    4. \(m\angle 1=m\angle 5\) 4. Corresponding Angles Postulate
    5. \(m\angle 5=90^{\circ}\) 5. Transitive \(PoE\)
    6. \(m\angle 6=m\angle 7=90^{\circ}\) 6. Congruent Linear Pairs
    7. \(m\angle 8=\(90^{\circ}\) 7. Vertical Angles Theorem
    8. \(\angle 5\), \(\angle 6\), \(\angle 7\), and \(\angle 8\) are right angles 8. Definition of right angle
    9. \(n\perp m\) 9. Definition of perpendicular lines

    Review

    Use the figure below to answer questions 1-2. The two pentagons are parallel and all of the rectangular sides are perpendicular to both of them.

    f-d_dc6bed64085f2a2d510741341c01148f593a03c99081005265f67cee+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{10}\)
    1. List a pair of perpendicular lines.
    2. For \(\overline{AB}\), how many perpendicular lines would pass through point \(V\)? Name this/these line(s).

    Use the picture below for question 3.

    f-d_f8e0d0c765e41bd04ca58a5e73cd09555a02a929d06f952cf3e5ddd7+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{11}\)
    1. If \(t\perp l\), is \(t\perp m\)? Why or why not?

    Find the measure of \(\angle 1\) for each problem below.

    1. f-d_e2b4d7aeb43eeae8259583937cfd40b01b66f8d0a4acbd5165599c4d+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)
    2. f-d_cf3780e7d5a6fc60d483fe8f2a0e1e98923cc85ba6cac558efa0575f+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{13}\)
    3. f-d_a206a48511e9a2f5f18471d942b32984316bab26727b399770f7579a+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{14}\)
    4. f-d_f593c6932f3a8c8b05cc2ed0b83d34c50191f8c46cf696417a370008+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)
    5. f-d_9704d9ff8b541561d53d58409c93b7f500a5b5179ede0952d60d3f21+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{16}\)
    6. f-d_e17656a37024ce212cc9a5300831a65c3f9f7eacf4b6195fc5dc23ae+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{17}\)
    7. f-d_33f0ca09af4b4954c1e63fc196c33139fec697b3c73f2983404e6345+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{18}\)
    8. f-d_4afc78b462882132ce7a2d3df69ed7405fa7dcf64294dd1c14f3c922+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{19}\)
    9. f-d_61667c8782fefee0ba189ed83c3217ae91dc5104af9952eecbfa2a34+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{20}\)

    In questions 13-16, determine if \(l\perp m.\)

    1. f-d_e448e05b43fd132e5248949e06cf8a2e56ecdfebc3dccc5d7ab7fe9d+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{21}\)
    2. f-d_0287f76b2b6605a4ed8037a004f923c7e2ddf59dab98f797a2bdac5c+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{22}\)
    3. f-d_bb122f9bb2e2fbc3c2e6f85afb5b500047f2851f202ef6b889ff4160+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{23}\)
    4. f-d_30f4fafa9e18e7c71d6d82df58d120ae045bdafe13542b17606bf5bc+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{24}\)

    Fill in the blanks in the proof below.

    1. Given: \(l\perp m\), \(l\perp n\) Prove: \(m\parallel n\)
    f-d_45dfccf12527315f6ae801143dfbc7874e08d52822e3202c31c93f3b+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{25}\)
    Statement Reason
    1. 1.
    2. \(\angle 1\) and \(\angle 2\) are right angles 2.
    3. 3. Definition of right angles
    4. 4. Transitive \(PoE\)
    5. \(m\parallel n\) 5.

    Resources

    Vocabulary

    Term Definition
    perpendicular Two lines are perpendicular when they intersect to form a \(90^{\circ}\) angle.
    Angle A geometric figure formed by two rays that connect at a single point or vertex.
    Perpendicular lines Perpendicular lines are lines that intersect at a \(90^{\circ}\) angle.

    Additional Resources

    Interactive Element

    Video: Perpendicular Lines Principles - Basic

    Activities: Perpendicular Lines Discussion Questions

    Study Aids: Lines and Angles Study Guide

    Practice: Angles and Perpendicular Lines

    Real World: Turning The Tables


    This page titled 3.8: Angles and Perpendicular Lines is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?