Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

6.12: Chords and Central Angle Arcs

( \newcommand{\kernel}{\mathrm{null}\,}\)

Arcs determined by angles whose vertex is the center of a circle and chords (segments that connect two points on a circle).

Chords in Circles

Chord Theorems

There are several important theorems about chords that will help you to analyze circles better.

1. Chord Theorem #1: In the same circle or congruent circles, minor arcs are congruent if and only if their corresponding chords are congruent.

f-d_2ea1cf98cd7bab0d6cd479df866ce1d1371c7edd47866c18a95bbfd3+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.1

In both of these pictures, ¯BE¯CD and ^BE^CD.

2. Chord Theorem #2: The perpendicular bisector of a chord is also a diameter.

f-d_19e5e04c404c16527fd5c5d56ead6a6d4920136a9b025b6e667e4445+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.2

If ¯AD¯BC and ¯BD¯DC then ¯EF is a diameter.

3. Chord Theorem #3: If a diameter is perpendicular to a chord, then the diameter bisects the chord and its corresponding arc.

f-d_19e5e04c404c16527fd5c5d56ead6a6d4920136a9b025b6e667e4445+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.3

If ¯EF¯BC, then ¯BD¯DC

4. Chord Theorem #4: In the same circle or congruent circles, two chords are congruent if and only if they are equidistant from the center.

f-d_99e22c456e3f4815417f855a0311378b46e0787fd21b0120f5151699+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.4

The shortest distance from any point to a line is the perpendicular line between them. If FE=EG and ¯EF¯EG, then ¯AB and ¯CD are equidistant to the center and¯AB¯CD.

What if you were given a circle with two chords drawn through it? How could you determine if these two chords were congruent?

Example 6.12.1

Find the value of x and y.

f-d_a040b0389542bb379fa6c030342257c30c5de4c41e22004f5236607e+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.5

Solution

The diameter is perpendicular to the chord, which means it bisects the chord and the arc. Set up equations for x and y.

(3x4)=(5x18)y+4=2y+114=2x3=y7=x

Example 6.12.2

BD=12 and AC=3 in A. Find the radius.

f-d_e0b218827409e0747e0c8ecebad5c4eab55aa4db23adff4bc47203d4+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.6

Solution

First find the radius. ¯AB is a radius, so we can use the right triangle \Delta ABC\) with hypotenuse ¯AB. From Chord Theorem #3, BC=6.

32+62=AB29+36=AB2AB=45=35

Example 6.12.3

Use A to answer the following.

f-d_ca0baf3d34c480e5bd5781f6dd90473b3da0b492c4bbfe46186ef20e+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.7
  1. If m^BD=125, find m^CD.
  2. If m^BC=80, find m^CD.

Solution

  1. BD=CD, which means the arcs are congruent too. m^CD=125.
  2. m^CDm^BD because BD=CD.

m^BC+m^CD+m^BD=36080+2m^CD=3602m^CD=280m^CD=140

Example 6.12.4

Find the values of x and y.

f-d_5322912138f6a893d14b0f2210f643adc820904ff5e0813b4e9f0de8+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.8

Solution

The diameter is perpendicular to the chord. From Chord Theorem #3, x=6 and y=75.

Example 6.12.5

Find the value of x.

f-d_4c6c48ef93ea52ed1fe355459e5aaaf3616653d3ee5a6959905a9efc+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.9

Solution

Because the distance from the center to the chords is equal, the chords are congruent.

6x7=356x=42x=7

Review

Fill in the blanks.

f-d_7fd8fcdc43f0c3daab41774c107f386a3a4cda83d1877c7f19190cd0+IMAGE_TINY+IMAGE_TINY.png
Figure 6.12.10
  1. _____¯DF
  2. ^AC_____
  3. ^DJ_____
  4. _____¯EJ
  5. AGH_____
  6. DGF_____
  7. List all the congruent radii in G.

Find the value of the indicated arc in A.

  1. m^BC
    f-d_c0e07b24726f78db00fccf22e1f3918180a27ab379bd20cede393394+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.11
  2. m^BD
    f-d_bce947699ed17e4af5984ac250939bce56a798366107e63de77029c5+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.12
  3. m^BC
    f-d_c1cd036cd92993bb5ac74ba6504eaaf82ff93aa82c9c011ee8938f8c+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.13
  4. m^BD
    f-d_22fe07967bfa0b508d63993b168b76d2316f2cdd0d5144e66a1f98b0+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.14
  5. m^BD
    f-d_3ed1e002c73425868c9e3abb33a7391ef4a477bde1a3e1ca0dbf105e+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.15
  6. m^BD
    f-d_4f8a37ea252641518cae7abf9e4885e448590d80a944ca8d69932b23+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.16

Find the value of x and/or y.

  1. f-d_95516e6a2de73e7e3446d679a0d9b1f3111de133bc0cf62b5a7fc83b+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.17
  2. f-d_d47ecdb188af6f2ba1d054cd698e394d84eb04b4f4638b6d0767b4e2+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.18
  3. f-d_9be9abda5a3dbc885f1f2cd569efbbf5fc8ac77202c1b9a5f088667b+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.19
  4. AB=32
    f-d_ea7a725b547ada9e571cd08f2aa773e4d8755e54460b6a818cfc727c+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.20
  5. f-d_4492ff4d528ec529326136c74f79977f45dd9b253385402237da0e9c+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.21
  6. f-d_8f018a04724318888c2af6dab8e56abf73852ca4f411bf60d1f003fc+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.22
  7. f-d_56aee6101f23de087cdb1cf8e4c4128722b26f889fa0706c5874e346+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.23
  8. f-d_737eb20a8a8d654e96f6dc7cc4bc884a737733cb0201d3d4f039bcc9+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.24
  9. AB=20
    f-d_158517bba0cbbcd29603245c2ac279bee074d72c72505a8b21644cf3+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.25
  10. Find m^AB in Question 17. Round your answer to the nearest tenth of a degree.
  11. Find m^AB in Question 22. Round your answer to the nearest tenth of a degree.

In problems 25-27, what can you conclude about the picture? State a theorem that justifies your answer. You may assume that A is the center of the circle.

  1. f-d_eb4b17b2ae37553bd45a56c987091014a1018bd3481fa03047b60e08+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.26
  2. f-d_f73f80551beeb5404eb70ce01f9b8b70fba384ebd8c21685d435c671+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.27
  3. f-d_cd466baf5e5be089161117b67b6f950de91de043fb4b82a3506276a9+IMAGE_TINY+IMAGE_TINY.png
    Figure 6.12.28

Review (Answers)

To see the Review answers, open this PDF file and look for section 9.4.

Vocabulary

Term Definition
chord A line segment whose endpoints are on a circle.
circle The set of all points that are the same distance away from a specific point, called the center.
diameter A chord that passes through the center of the circle. The length of a diameter is two times the length of a radius.
radius The distance from the center to the outer rim of a circle.

Additional Resources

Interactive Element

Video: Chords in Circles Principles - Basic

Activities: Chords in Circles Discussion Questions

Study Aids: Circles: Segments and Lengths Study Guide

Practice: Chords and Central Angle Arcs


This page titled 6.12: Chords and Central Angle Arcs is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?