Skip to main content
K12 LibreTexts

9.1: Polyhedrons

  • Page ID
    2166
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    3-D figures formed by polygons enclosing regions in space.

    A polyhedron is a 3-dimensional figure that is formed by polygons that enclose a region in space. Each polygon in a polyhedron is a face. The line segment where two faces intersect is an edge. The point of intersection of two edges is a vertex.

    f-d_91a81d101450f612b406dcbf3024bc51c5e0c3e5fd1bc61db8da1e34+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    Examples of polyhedrons include a cube, prism, or pyramid. Cones, spheres, and cylinders are not polyhedrons because they have surfaces that are not polygons. The following are more examples of polyhedrons:

    f-d_fa878ef60b960bd6f1562c3ac60b15f53a594f113655d50b854b82eb+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)
    f-d_337d522665f20bbff90b3f9a3127f63b0cd095e15083ad7ea1861635+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    The number of faces (\(F\)), vertices (\(V\)) and edges (\(E\)) are related in the same way for any polyhedron. Their relationship was discovered by the Swiss mathematician Leonhard Euler, and is called Euler’s Theorem.

    Euler’s Theorem: \(F+V=E+2\).

    f-d_550cc1ce1962dbbdf1cf6cec098e0eedf1f135df4f918297fd4175ce+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    \(Faces+Vertices=Edges+2\)

    \(5+6=9+2\)

    A regular polyhedron is a polyhedron where all the faces are congruent regular polygons. There are only five regular polyhedra, called the Platonic solids.

    1. Regular Tetrahedron: A 4-faced polyhedron and all the faces are equilateral triangles.
    2. Cube: A 6-faced polyhedron and all the faces are squares.
    3. Regular Octahedron: An 8-faced polyhedron and all the faces are equilateral triangles.
    4. Regular Dodecahedron: A 12-faced polyhedron and all the faces are regular pentagons.
    5. Regular Icosahedron: A 20-faced polyhedron and all the faces are equilateral triangles.
    f-d_49bc4b842ef6632bb34ca98ae4bf64a358fde57545f076976c79cea8+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    What if you were given a solid three-dimensional figure, like a carton of ice cream? How could you determine how the faces, vertices, and edges of that figure are related?

    Example \(\PageIndex{1}\)

    1. f-d_465eafd71207d39a6a3cc5f8eb239bbb5c950e71087a89e1bc39c091+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{6}\)
    2. f-d_4f0ac5170e92ab0945e5769a54bad058d9fb77fbd16f74fd8b3274a0+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{7}\)
    3. f-d_edc997d2f80d3ddf061278a6e31fc31cf15d5755ee45fe3dbacbebf2+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{8}\)

    Solution

    The base is a triangle and all the sides are triangles, so this is a triangular pyramid, which is also known as a tetrahedron. There are 4 faces, 6 edges and 4 vertices.

    Example \(\PageIndex{2}\)

    In a six-faced polyhedron, there are 10 edges. How many vertices does the polyhedron have?

    Solution

    Solve for \(V\) in Euler’s Theorem.

    \(\begin{aligned} F+V&=E+2 \\ 6+V&=10+2 \\ V&=6\end{aligned} \)

    Therefore, there are 6 vertices.

    Example \(\PageIndex{3}\)

    Markus counts the edges, faces, and vertices of a polyhedron. He comes up with 10 vertices, 5 faces, and 12 edges. Did he make a mistake?

    Solution

    Plug all three numbers into Euler’s Theorem.

    \(\begin{aligned} F+V&=E+2 \\ 5+10&=12+2 \\ 15 &\neq 14 \end{aligned}\)

    Because the two sides are not equal, Markus made a mistake.

    Example \(\PageIndex{4}\)

    Find the number of faces, vertices, and edges in an octagonal prism.

    f-d_df896d80b04745665ba854217d4381a3b32087709616f72c1a2a4d96+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{9}\)

    Solution

    There are 10 faces and 16 vertices. Use Euler’s Theorem, to solve for \(E\).

    \(\begin{aligned} F+V&=E+2 \\ 10+16&=E+2 \\ 24&=E \end{aligned}\)

    Therefore, there are 24 edges.

    Example \(\PageIndex{5}\)

    A truncated icosahedron is a polyhedron with 12 regular pentagonal faces, 20 regular hexagonal faces, and 90 edges. This icosahedron closely resembles a soccer ball. How many vertices does it have? Explain your reasoning.

    f-d_6def0c116e07990393eb5902bfd8e689d813dfdef551ebe9ad9a2a75+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{10}\)

    Solution

    We can use Euler's Theorem to solve for the number of vertices.

    \(\begin{aligned} F+V&=E+2 \\ 32+V&=90+2 \\ V&=60\end{aligned}\)

    Therefore, it has 60 vertices.

    Review

    Complete the table using Euler’s Theorem.

    Name Faces Edges Vertices
    1. Rectangular Prism 6 12
    2. Octagonal Pyramid 16 9
    3. Regular Icosahedron 20 12
    4. Cube 12 8
    5. Triangular Pyramid 4 4
    6. Octahedron 8 12
    7. Heptagonal Prism 21 14
    8. Triangular Prism 5 9

    Determine if the following figures are polyhedra. If so, name the figure and find the number of faces, edges, and vertices.

    1. f-d_5954eeaa564738d749f28ebaa6edf83c51465e98cde403c296f067e0+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{11}\)
    2. f-d_6fc90c2e2894ef9d165e38081b1c3a4f6b2c32bf631820404c57e1c7+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)
    3. f-d_cba9af3a75ded215664ee9c4b41528d42d8fa14bbf39f28068b83aab+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{13}\)
    4. f-d_d6143156492831ba8ff6c7e429dc4717251cae750ef22d36eb089547+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{14}\)
    5. f-d_b2ab2dcced4a5736eae3e8d9e52aac749abc70187d62d53918b864fc+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 11.1.

    Additional Resources

    Video: Polyhedrons Principles - Basic

    Activities: Polyhedrons Discussion Questions

    Study Aids: Polyhedra Study Guide

    Practice: Polyhedrons

    Real World: Roly Poly Polyhedron!


    This page titled 9.1: Polyhedrons is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?