Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

2.16: Parallelogram Proofs

( \newcommand{\kernel}{\mathrm{null}\,}\)

Apply theorems to show if a quadrilateral has two pairs of parallel sides.

Quadrilaterals that are Parallelograms

Recall that a parallelogram is a quadrilateral with two pairs of parallel sides. Even if a quadrilateral is not marked with having two pairs of sides, it still might be a parallelogram. The following is a list of theorems that will help you decide if a quadrilateral is a parallelogram or not.

1. Opposite Sides Theorem Converse: If both pairs of opposite sides of a quadrilateral are congruent, then the figure is a parallelogram.

If

f-d_b44f3f753ae5d2c0f64fe05ea27747fece73e8409e7a42a40ebe4a1b+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.1

then

f-d_994d6497cbae0e45c57daa4d03e6067e99015df4ccb97c8bf5a14596+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.2

2. Opposite Angles Theorem Converse: If both pairs of opposite angles of a quadrilateral are congruent, then the figure is a parallelogram.

If

f-d_2118168440f8fc1a13c1238ef26d6fa54c1173fb4e7e4e2a20c7199c+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.3

then

f-d_528830801800a01007e868c589b2ebf40ab26919f4557be5e605481a+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.4

3. Parallelogram Diagonals Theorem Converse: If the diagonals of a quadrilateral bisect each other, then the figure is a parallelogram.

If

f-d_46c004c44a75296d2eac72bd737291bae01ab65e1820b5204f3586ca+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.5

then

f-d_c6443e1c10cf2e9c4d75ba5b555b815d0a95690ca23ea976a0b40e5f+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.6

4. Parallel Congruent Sides Theorem: If a quadrilateral has one set of parallel lines that are also congruent, then it is a parallelogram.

If

f-d_e46203f33a4881541307b95407d5031345edcb82ae45185ea0c3aa76+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.7

then

f-d_7d8fcf2fea2284750352c44fdde20db6255d6298f2cf47be907ff997+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.8

You can use any of the above theorems to help show that a quadrilateral is a parallelogram. If you are working in the x−y plane, you might need to know the formulas shown below to help you use the theorems.

  • The Slope Formula, y2y1x2x1. (Remember that if slopes are the same then lines are parallel).
  • The Distance Formula, (x2x1)2+(y2y1)2. (This will help you to show that two sides are congruent).
  • The Midpoint Formula, (x1+x22,y1+y22). (If the midpoints of the diagonals are the same then the diagonals bisect each other).

What if you were given four pairs of coordinates that form a quadrilateral? How could you determine if that quadrilateral is a parallelogram?

Example 2.16.1

Prove the Parallel Congruent Sides Theorem.

f-d_481247021bd2921618edf2f5e05543ff7668412a6a797825b7b69f29+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.9

Given: ¯AB¯DC, and ¯AB¯DC

Prove: ABCD is a parallelogram

Solution

Statement Reason
1. ¯AB¯DC, and ¯AB¯DC 1. Given
2. ABDBDC 2. Alternate Interior Angles
3. ¯DB¯DB 3. Reflexive PoC
4. ΔABDΔCDB 4. SAS
5. ¯AD¯BC\) 5. CPCTC
6. ABCD is a parallelogram 6. Opposite Sides Converse

Example 2.16.2

What value of x would make ABCD a parallelogram?

f-d_57be9d320081b376883ec8cad8136dedf5e1644f34d20438c1632327+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.10

Solution

¯AB¯DC. By the Parallel Congruent Sides Theorem, ABCD would be a parallelogram if AB=DC.

5x8=2x+133x=21x=7

Example 2.16.3

Prove the Opposite Sides Theorem Converse.

f-d_481247021bd2921618edf2f5e05543ff7668412a6a797825b7b69f29+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.11

Given: ¯AB¯DC, ¯AD¯BC

Prove: ABCD is a parallelogram

Solution

Statement Reason
1. ¯AB¯DC,¯AD¯BC 1.Given
2. ¯DB¯DB 2. Reflexive PoC
3. ΔABDΔCDB 3. SSS
4. ABDBDC,ADBDBC 4. CPCTC
5. ¯AB¯DC,¯AD¯BC 5. Alternate Interior Angles Converse
6. ABCD is a parallelogram 6. Definition of a parallelogram

Example 2.16.4

Is quadrilateral EFGH a parallelogram? How do you know?

f-d_b1740b63357c5d41fd536f61ac4336ce081028133139b46445b5a7af+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.12

Solution

By the Opposite Angles Theorem Converse, EFGH is a parallelogram.

EFGH is not a parallelogram because the diagonals do not bisect each other.

Example 2.16.5

Is the quadrilateral ABCD a parallelogram?

f-d_ad6c14bc1b86d3eeeaa76acbda23277a9070ebd2c788dea374e53bbc+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.13

Solution

Let’s use the Parallel Congruent Sides Theorem to see if ABCD is a parallelogram. First, find the length of AB and CD using the distance formula.

AB=(13)2+(53)2CD=(26)2+(2+4)2=(4)2+22=(4)2+22=16+4=20=16+4=20

Next find the slopes to check if the lines are parallel.

SlopeAB=5313=24=12SlopeCD=2+426=24=12

AB=CD and the slopes are the same (implying that the lines are parallel), so ABCD is a parallelogram.

Review

For questions 1-12, determine if the quadrilaterals are parallelograms.


  1. f-d_f115e63a62ea93db5c7c2626104f16d483f975e8fb7d2ce76dce2651+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.14
  2. f-d_d4552bb5eb475c4c4ce3f5b1bbcbc5a529242c4e35b20e4d16b53475+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.15
  3. f-d_6e35e37accd9e3dfbd07885a830ad68194d5e01d384acf20f8b48d8e+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.16
  4. f-d_24cfeae21b610c1ef10b4fb97b5212b20d60593b74aa485a85d1a5cd+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.17
  5. f-d_44353c64a9f78624e106f20154cd9f99181debe964e91b4047f2973c+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.18
  6. f-d_a872533899b5e49c28e959cd6bdcf8536a59b66b67d863c5d332452d+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.19
  7. f-d_f099d07dd39fc5387cb4b57ef6718c22cca19fc3bada97ce191a6d3c+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.20
  8. f-d_693a8ec5c82d2b046ae574582eb1e6f1d7f4a999dfab808061a26406+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.21
  9. f-d_aa10e238732f18cd00acc1324d6bc0b283aa6be2ee92559b3fb1718d+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.22
  10. f-d_1e7c0639f04b1522952e96b432d4ef96930fc55563a7f0762c96643f+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.23
  11. f-d_098fceba94a4685311ba9bbd93bde184c39b57bef6c4f493e4b25f03+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.24
  12. f-d_3c7e18be2f36809db07c1f98cd412b8c452bc11585c76408ea1ed6be+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.25

For questions 13-18, determine the value of x and y that would make the quadrilateral a parallelogram.


  1. f-d_1539ca43a25a0987c6ec6a5c3bf136b42087fe789e8b551ba121479e+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.26
  2. f-d_f779028e7d8b015f18326b4aa28e0043d1270e0aaaa7253c6282e096+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.27
  3. f-d_82c1c140c26b3569c7f61c021a892308a80816efd2c32dc79a777ed5+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.28
  4. f-d_cbd0d4db01f59e53f702d0678534bf3c369bd54ac751831222fd6e13+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.29
  5. f-d_ef3d72d5ae275cfd7f794254471af20f5978e7818d4571316bd86f79+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.30
  6. f-d_9e4b4d0af7226ede7751c9928b9412b04996fb55808ad75983dd3319+IMAGE_TINY+IMAGE_TINY.png
    Figure 2.16.31

For questions 19-22, determine if ABCD is a parallelogram.

  1. A(8,1), B(6,5), C(7,2), D(5,4)
  2. A(5,8), B(2,9), C(3,4), D(0,3)
  3. A(2,6), B(4,4), C(13,7), D(4,10)
  4. A(9,1), B(7,5), C(3,8), D(1,2)

Fill in the blanks in the proofs below.

  1. Opposite Angles Theorem Converse
f-d_14c5c7af431574174f61e564b4ce1c17a9f6dafef030e565b85454c6+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.32

Given: AC, DB

Prove: ABCD is a parallelogram

Statement Reason
1. 1.
2. mA=mC, mD=mB 2.
3. 3. Definition of a quadrilateral
4. mA+mA+mB+mB=360 4.
5. 5. Combine Like Terms
6. 6. Division PoE
7. A and B are supplementary A and D are supplementary 7.
8. 8. Consecutive Interior Angles Converse
9. ABCD is a parallelogram 9.
  1. Parallelogram Diagonals Theorem Converse
f-d_4c50cdd807989540195ffb2226df7dc09513ff33267308d9f8203ca8+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.33

Given: ¯AE¯EC, ¯DE¯EB

Prove: ABCD is a parallelogram

Statement Reason
1. 1.
2. 2. Vertical Angles Theorem

3. ΔAEDΔCEB

ΔAEBΔCED

3.
4. 4.
5. ABCD is a parallelogram 5.
  1. Given: ADBCBD, ¯AD¯BC

Prove: ABCD is a parallelogram

f-d_481247021bd2921618edf2f5e05543ff7668412a6a797825b7b69f29+IMAGE_TINY+IMAGE_TINY.png
Figure 2.16.34
Statement Reason
1. 1.
2. ¯AD¯BC 2.
3. ABCD is a parallelogram 3.

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.4.

Additional Resources

Interactive Element

Video: Proving a Quadrilateral is a Parallelogram Principles - Basic

Activities: Quadrilaterals that are Parallelograms Discussion Questions

Study Aids: Parallelograms Study Guide

Practice: Parallelogram Proofs

Real World: Quadrilaterals That Are Parallelograms


This page titled 2.16: Parallelogram Proofs is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?