Skip to main content
K12 LibreTexts

4.1: Classify Triangles

  • Page ID
    2178
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Classify triangles as acute, right, obtuse or equiangular and as scalene, isosceles or equilateral. Use classifications to find missing information.

    Triangle Classification

    A triangle is any closed figure made by three line segments intersecting at their endpoints. Every triangle has three vertices (the points where the segments meet), three sides (the segments), and three interior angles (formed at each vertex). All of the following shapes are triangles.

    f-d_d8c6379c0e8f8869385631c4846a2d049daddb530ce1ad7344df8de3+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    The sum of the interior angles in a triangle is \(180^{\circ}\). This is called the Triangle Sum Theorem and is discussed further in the "Triangle Sum Theorem" concept.

    Angles can be classified by their size as acute, obtuse or right. In any triangle, two of the angles will always be acute. The third angle can be acute, obtuse, or right. We classify each triangle by this angle.

    Right Triangle: A triangle with one right angle.

    f-d_8ed52ee1a2e7eb5458712d830fbe37bf014c53ea4cbded7cf844b3bd+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Obtuse Triangle: A triangle with one obtuse angle.

    f-d_bfc9480a30b71ad6509c5a7191a0ea741838d82131c46e769e88b192+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Acute Triangle: A triangle where all three angles are acute.

    f-d_14754eeed5fab5aa517f5abf2e2340b028050e0044b1b77aa9631e02+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Equiangular Triangle: A triangle where all the angles are congruent.

    f-d_bed2de60b04531babf632cadc682990fa58212e89a805017df6db275+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    You can also classify a triangle by its sides.

    Scalene Triangle: A triangle where all three sides are different lengths.

    f-d_d3b6e310dc467173153eaf26bbd29bce5691ab7f9eec5982f3c62004+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)

    Isosceles Triangle: A triangle with at least two congruent sides.

    f-d_8061ea0db95831615b94dc372e69c354a0d480f20697abfe640616f5+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)

    Equilateral Triangle: A triangle with three congruent sides.

    f-d_02249522b7113a5d03711be43379feaa3ce9bf011bd26da011ef664d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{8}\)

    Note that from the definitions, an equilateral triangle is also an isosceles triangle.

    What if you were given the angle measures and/or side lengths of a triangle? How would you describe the triangle based on that information?

    Example \(\PageIndex{1}\)

    Which of the figures below are not triangles?

    f-d_ff51dbfa573731fc7aff363ede5e2b8e927afdf9d4699803713427e9+IMAGE_TINY+IMAGE_TINY.pngFigure \(\PageIndex{9}\)

    Solution

    B is not a triangle because it has one curved side. D is not closed, so it is not a triangle either.

    Example \(\PageIndex{2}\)

    How many triangles are in the diagram below?

    f-d_80720053e15144fabfeef165fe6cdf0d0307f880311a395164f7011f+IMAGE_TINY+IMAGE_TINY.pngFigure \(\PageIndex{10}\)

    Solution

    Start by counting the smallest triangles, 16.

    Now count the triangles that are formed by 4 of the smaller triangles, 7.

    f-d_95bfb2221533d9b22079af1d0e8b1f27d53e5719e69cfa54c6f77aaf+IMAGE_TINY+IMAGE_TINY.pngFigure \(\PageIndex{11}\)

    Next, count the triangles that are formed by 9 of the smaller triangles, 3.

    f-d_bcf1182e36d2a1c82b1c37568a673bb04bdef9a4f9a57cda686d16c6+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{12}\)

    Finally, there is the one triangle formed by all 16 smaller triangles. Adding these numbers together, we get \(16+7+3+1=27\).

    Example \(\PageIndex{3}\)

    True or false: An equilateral triangle is equiangular.

    Solution

    True. Equilateral triangles have interior angles that are all congruent so they are equiangular.

    Example \(\PageIndex{4}\)

    Which term best describes \(\Delta RST\) below?

    f-d_12fd1c76e6bdc3426fedb28ad15e4f53e8316491056da7f65a68d7c9+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{13}\)

    Solution

    This triangle has one labeled obtuse angle of \(92^{\circ}\). Triangles can have only one obtuse angle, so it is an obtuse triangle.

    Example \(\PageIndex{5}\)

    Classify the triangle by its sides and angles.

    f-d_a38ebf9eeef5e8deeb0dd2c0674760c870a09d222cb31a7d63aeb1c3+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{14}\)

    Solution

    We see that there are two congruent sides, so it is isosceles. By the angles, they all look acute. We say this is an acute isosceles triangle.

    Review

    For questions 1-6, classify each triangle by its sides and by its angles.

    1. f-d_0b879c2c029a21d4560fa14217ceb79ff7099c8acec67c28d7ddacd0+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)
    2. f-d_45e2b344f491e6a533e8a48c07e792a8596d421661ec40058191a73d+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{16}\)
    3. f-d_f1b0e62f6ab70e48f25740af5d418b0a075f9c7c9417d752647474f7+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{17}\)
    4. f-d_9e792de0ae2fa65f128f0ef6a69eb5247b06bc68f7d05fc25343f04c+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{18}\)
    5. f-d_c32dc60a3d03c13aff16f69b97c14a9ca7c8a79e11c5141dd666194b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{19}\)
    6. f-d_80d6e915c558745c0fbad4686c50ead5ef805bbb41ad9b3f56e0fab1+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{20}\)
    7. Can you draw a triangle with a right angle and an obtuse angle? Why or why not?
    8. In an isosceles triangle, can the angles opposite the congruent sides be obtuse?

    For 9-10, determine if the statement is true or false.

    1. Obtuse triangles can be isosceles.
    2. A right triangle is acute.

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 1.11.

    Resources

    Vocabulary

    Term Definition
    Acute Triangle An acute triangle has three angles that each measure less than 90 degrees.
    equiangular triangle A triangle with all congruent angles.
    equilateral triangle A triangle with three congruent sides.
    Isosceles Triangle An isosceles triangle is a triangle in which exactly two sides are the same length.
    Obtuse Triangle An obtuse triangle is a triangle with one angle that is greater than 90 degrees.
    Scalene Triangle A scalene triangle is a triangle in which all three sides are different lengths.
    Triangle A triangle is a polygon with three sides and three angles.
    Interior angles Interior angles are the angles inside a figure.
    Right Angle A right angle is an angle equal to 90 degrees.
    Equilateral A polygon is equilateral if all of its sides are the same length.
    Equiangular A polygon is equiangular if all angles are the same measure.

    Additional Resources

    Interactive Element

    Video: Angle Relationships and Types of Triangles

    Activities: Triangle Classification Discussion Questions

    Study Aids: Polygons Study Guide

    Practice: Classify Triangles

    Real World: Bridges Over Troubled Water


    This page titled 4.1: Classify Triangles is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?