Loading [MathJax]/extensions/TeX/boldsymbol.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

5.13: Trapezoids

( \newcommand{\kernel}{\mathrm{null}\,}\)

Determine unknown angle measurements of quadrilaterals with exactly one pair of parallel sides.

A trapezoid is a quadrilateral with exactly one pair of parallel sides.

f-d_85da86b74d3e7cff769a38ed51bf8ea9dd6bfb06b142c8d8100be848+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{1}

An isosceles trapezoid is a trapezoid where the non-parallel sides are congruent.

f-d_6692d09bbbeeefe05e18e626314c63b9c7c8f412a3290ee10cae837d+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{2}

The base angles of an isosceles trapezoid are congruent. If \(ABCD\) is an isosceles trapezoid, then \angle A\cong \angle B and \angle C\cong \angle D.

f-d_90ad2cc14decdd426fb2b247e7621150dcf950854e8cfa0d4f11b876+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{3}

The converse is also true. If a trapezoid has congruent base angles, then it is an isosceles trapezoid. The diagonals of an isosceles trapezoid are also congruent. The midsegment (of a trapezoid) is a line segment that connects the midpoints of the non-parallel sides:

f-d_e7c3fc7c597d0f75dc3e68eb9a47affaa3da6a09a4805f244fffb011+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{4}

There is only one midsegment in a trapezoid. It will be parallel to the bases because it is located halfway between them.

Midsegment Theorem: The length of the midsegment of a trapezoid is the average of the lengths of the bases.

f-d_e9b587e86482f04cb836938279acfe16bc94e5f454261bd57fe7026e+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{5}

If \overline{EF} is the midsegment, then EF=\dfrac{AB+CD}{2}.

What if you were told that the polygon ABCD is an isosceles trapezoid and that one of its base angles measures 38^{\circ}? What can you conclude about its other base angle?

For Examples 1 and 2, use the following information:

\(TRAP\) is an isosceles trapezoid.

f-d_c00ace22483d21997564bddc94c062df030a05d979ec7c699c55246c+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{6}

Example \PageIndex{1}

Find m\angle TPA.

Solution

\angle TPZ\cong \angle RAZ so m\angle TPA=20^{\circ} +35^{\circ} =55^{\circ}.

Example \PageIndex{2}

Find m\angle ZRA.

Solution

Since m\angle PZA=110^{\circ}, m\angle RZA=70^{\circ} because they form a linear pair. By the Triangle Sum Theorem, m\angle ZRA=90^{\circ}.

Example \PageIndex{3}

Look at trapezoid TRAP below. What is m\angle A?

f-d_bfb1a31bd2f7b79971801bac7c3c3dbe4b00a51e4a6caf107c9f032c+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{7}

Solution

TRAP is an isosceles trapezoid. m\angle R=115^{\circ} also.

To find \(m\angle , set up an equation.

\begin{aligned} 115^{\circ}+115^{\circ}+m \angle A+m \angle P &=360^{\circ} \\ 230^{\circ}+2 m \angle A &=360^{\circ} \quad \rightarrow m \angle A=m \angle P \\ 2 m \angle A &=130^{\circ} \\ m \angle A &=65^{\circ} \end{aligned}

Notice that m\angle R+m\angle A=115^{\circ} +65^{\circ} =180^{\circ}. These angles will always be supplementary because of the Consecutive Interior Angles Theorem.

Example \PageIndex{4}

Is ZOID an isosceles trapezoid? How do you know?

f-d_053ad68c2d327c0fe2250dae3f8075e1a661132b221a972e194ec02d+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{8}

Solution

40^{\circ} \neq 35^{\circ}, ZOID is not an isosceles trapezoid.

Example \PageIndex{5}

Find x. All figures are trapezoids with the midsegment marked as indicated.

  1. f-d_75a8a92e617fe446439515147e845df56ed7391a470108614bd12810+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{10}
  1. f-d_7671594a2c974ac4555a516ea82ddf87c05a2a433848f47fce3853b0+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{10}
  2. f-d_caa24327458dc5f2f7c1aee9220318bd2822fff11c72f9f042517de3+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{11}

Solution

  1. x is the average of 12 and 26. \dfrac{12+26}{2}=\dfrac{38}{2}=19
  2. 24 is the average of x and 35.

    \begin{aligned} \dfrac{x+35}{2}&=24 \\ x+35&=48 \\ x&=13 \end{aligned}

  1. 20 is the average of 5x−15 and 2x−8.

    \begin{aligned} \dfrac{5x−15+2x−8}{2}&=20 \\ 7x−23&=40 \\ 7x&=63 \\ x&=9 \end{aligned}

Review

1. Can the parallel sides of a trapezoid be congruent? Why or why not?

For questions 2-8, find the length of the midsegment or missing side.

  1. f-d_8174a765e88593cc3813a93996d59d00778ea43c891df8dd62763f3c+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{12}
  2. f-d_6c1be5ea5cb93433e44642cbac4d3fc2078d65630b2bc67fdcfb642b+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{13}
  3. f-d_3f8a6e3e4e1dac669f1d9169b634ebd2a8eb4f0fd5b60c787c076e66+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{14}
  4. f-d_eae981cc91905c3158a1d484657596c6c91e4e9e9699af766999b969+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{15}
  5. f-d_54789fe8635cc70ebf85cebf2fd18981df3c414380d8a009a844a714+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{16}
  6. f-d_0f0366c36473d55c378e18f0788a63ad070a7205a5b3775c7b2c34f0+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{17}

Find the value of the missing variable(s).

  1. f-d_74ac3cd5215d4ea2852c000bb03739aa1a53629c2628d9998d05c7c5+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{18}

Find the lengths of the diagonals of the trapezoids below to determine if it is isosceles.

  1. A(−3,2), B(1,3), C(3,−1), D(−4,−2)
  2. A(−3,3), B(2,−2), C(−6,−6), D(−7,1)

Review (Answers)

To see the Review answers, open this PDF file and look for section 6.6.

Vocabulary

Term Definition
isosceles trapezoid An isosceles trapezoid is a trapezoid where the non-parallel sides are congruent.
midsegment (of a trapezoid) A line segment that connects the midpoints of the non-parallel sides.
trapezoid A quadrilateral with exactly one pair of parallel sides.
Diagonal A diagonal is a line segment in a polygon that connects nonconsecutive vertices
midsegment A midsegment connects the midpoints of two sides of a triangle or the non-parallel sides of a trapezoid.

Additional Resources

Interactive Element

Video: Trapezoids Examples - Basic

Activities: Trapezoids Discussion Questions

Study Aids: Trapezoids and Kites Study Guide

Practice: Trapezoids

Real World: Trapezoids in Timbuktu


This page titled 5.13: Trapezoids is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?