Loading [MathJax]/extensions/TeX/newcommand.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

7.13: Proportions and Angle Bisectors

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\id}{\mathrm{id}} \newcommand{\Span}{\mathrm{span}}

( \newcommand{\kernel}{\mathrm{null}\,}\) \newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}} \newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}} \newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\id}{\mathrm{id}}

\newcommand{\Span}{\mathrm{span}}

\newcommand{\kernel}{\mathrm{null}\,}

\newcommand{\range}{\mathrm{range}\,}

\newcommand{\RealPart}{\mathrm{Re}}

\newcommand{\ImaginaryPart}{\mathrm{Im}}

\newcommand{\Argument}{\mathrm{Arg}}

\newcommand{\norm}[1]{\| #1 \|}

\newcommand{\inner}[2]{\langle #1, #2 \rangle}

\newcommand{\Span}{\mathrm{span}} \newcommand{\AA}{\unicode[.8,0]{x212B}}

\newcommand{\vectorA}[1]{\vec{#1}}      % arrow

\newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow

\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vectorC}[1]{\textbf{#1}} 

\newcommand{\vectorD}[1]{\overrightarrow{#1}} 

\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} 

\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}

\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } 

\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}

\newcommand{\avec}{\mathbf a} \newcommand{\bvec}{\mathbf b} \newcommand{\cvec}{\mathbf c} \newcommand{\dvec}{\mathbf d} \newcommand{\dtil}{\widetilde{\mathbf d}} \newcommand{\evec}{\mathbf e} \newcommand{\fvec}{\mathbf f} \newcommand{\nvec}{\mathbf n} \newcommand{\pvec}{\mathbf p} \newcommand{\qvec}{\mathbf q} \newcommand{\svec}{\mathbf s} \newcommand{\tvec}{\mathbf t} \newcommand{\uvec}{\mathbf u} \newcommand{\vvec}{\mathbf v} \newcommand{\wvec}{\mathbf w} \newcommand{\xvec}{\mathbf x} \newcommand{\yvec}{\mathbf y} \newcommand{\zvec}{\mathbf z} \newcommand{\rvec}{\mathbf r} \newcommand{\mvec}{\mathbf m} \newcommand{\zerovec}{\mathbf 0} \newcommand{\onevec}{\mathbf 1} \newcommand{\real}{\mathbb R} \newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]} \newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]} \newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]} \newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]} \newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]} \newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]} \newcommand{\laspan}[1]{\text{Span}\{#1\}} \newcommand{\bcal}{\cal B} \newcommand{\ccal}{\cal C} \newcommand{\scal}{\cal S} \newcommand{\wcal}{\cal W} \newcommand{\ecal}{\cal E} \newcommand{\coords}[2]{\left\{#1\right\}_{#2}} \newcommand{\gray}[1]{\color{gray}{#1}} \newcommand{\lgray}[1]{\color{lightgray}{#1}} \newcommand{\rank}{\operatorname{rank}} \newcommand{\row}{\text{Row}} \newcommand{\col}{\text{Col}} \renewcommand{\row}{\text{Row}} \newcommand{\nul}{\text{Nul}} \newcommand{\var}{\text{Var}} \newcommand{\corr}{\text{corr}} \newcommand{\len}[1]{\left|#1\right|} \newcommand{\bbar}{\overline{\bvec}} \newcommand{\bhat}{\widehat{\bvec}} \newcommand{\bperp}{\bvec^\perp} \newcommand{\xhat}{\widehat{\xvec}} \newcommand{\vhat}{\widehat{\vvec}} \newcommand{\uhat}{\widehat{\uvec}} \newcommand{\what}{\widehat{\wvec}} \newcommand{\Sighat}{\widehat{\Sigma}} \newcommand{\lt}{<} \newcommand{\gt}{>} \newcommand{\amp}{&} \definecolor{fillinmathshade}{gray}{0.9}

Angle bisectors divide triangles proportionally.

Angle Bisector Theorem

When an angle within a triangle is bisected, the bisector divides the triangle proportionally. This idea is called the Angle Bisector Theorem.

Angle Bisector Theorem: If a ray bisects an angle of a triangle, then it divides the opposite side into segments that are proportional to the lengths of the other two sides.

f-d_da84f356665739ba245a4ebb575e160d0958b5bf84667475b08ed765+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{1}

If \Delta BAC\cong \Delta CAD, then \dfrac{BC}{CD}=\dfrac{AB}{AD}.

What if you were told that a ray was an angle bisector of a triangle? How would you use this fact to find unknown values regarding the triangle's side lengths?

Example \PageIndex{1}

Fill in the missing variable:

f-d_59445c1a5ee6fb90b94191437dc40e381f1301e8c0f36373bb62a003+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{2}

Solution

Set up a proportion and solve.

\begin{aligned} \dfrac{20}{y}&=\dfrac{15}{28−y} \\ 15y&=20(28−y) \\ 15y&=560−20y \\ 35y&=560 \\ y&=16\end{aligned}

Example \PageIndex{2}

Fill in the missing variable:

f-d_557b73cc3160dbb5c81c50c78be710a47dc53e0960bdbb66a795bf41+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{3}

Solution

Set up a proportion and solve.

\begin{aligned}\dfrac{12}{z}&=\dfrac{15}{9−z} \\ 15z&=12(9−z) \\ 15z&=108-12z \\ 27z&=108 \\ z&=4\end{aligned}

Example \PageIndex{3}

Find x.

f-d_077dc3197010de17cdc9357863a8fa7207bcb1674d7407b30163ae1a+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{4}

Solution

The ray is the angle bisector and it splits the opposite side in the same ratio as the other two sides. The proportion is:

\begin{aligned} \dfrac{9}{x}&=\dfrac{21}{14} \\ 21x&=126 \\ x&=6\end{aligned}

Example \PageIndex{4}

Find the value of x that would make the proportion true.

f-d_bbb063d9126edadad133fa633864c5ee76c661b4186d65737784c78e+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{5}

Solution

You can set up this proportion like the previous example.

\begin{aligned} \dfrac{5}{3}&=\dfrac{4x+1}{15} \\ 75&=3(4x+1) \\ 75&=12x+3 \\ 72&=12x \\ 6&=x\end{aligned}

Example \PageIndex{5}

Find the missing variable:

f-d_2d44b37c3732899c8d3b2f2255f038ab9e6128795420da3587c8b3fe+IMAGE_TINY+IMAGE_TINY.png
Figure \PageIndex{6}

Solution

Set up a proportion and solve like in the previous examples.

\begin{aligned}\dfrac{12}{4}&=\dfrac{x}{3} \\ 36&=4x \\ x&=9\end{aligned}

Review

Find the value of the missing variable(s).

  1. f-d_24ce554d011a0e3e31e7d4daf635b98a120cb9552ea8ca3d096f76d3+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{7}
  2. f-d_84d6db3c4d7396df4b25083fc71a31b4099423bcf9a2f4c42f481080+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{8}

Solve for the unknown variable.

  1. f-d_95564529aef0e07340e7594459e714692c4c70a0311fccc8d5cf3c01+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{9}
  2. f-d_c53bf9b7124a0c8e3c882cd0e8fdc89598c464a367cc28423c588895+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{10}
  3. f-d_d02c7214bd6fb963ee4df4fd635bac41dd929565555dfbbedc3c497f+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{11}
  4. f-d_4f6cd7437b63ded507ee66f64de8804a1c5affe643490a39d1b42551+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{12}
  5. f-d_b15d430eab396d9b58d837d2fbab5eaecd7a33e5cb6b2c69ae0cbd35+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{13}
  6. f-d_19860cb0860db486a4d0f2f59517212d4bc3a1bd01c0e3f194eff5df+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{14}
  7. f-d_744d19ef65fa873e8cf1e31568507ae5ea6479dc3f2a688982490511+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{15}
  8. f-d_ac393562e46f317a0ef6d90fb60756782e3a440c6dd1e286d08688e8+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{16}
  9. f-d_149663e96160a305980f5d9e3fc57f54677b641e80af1468a2c22b65+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{17}
  10. f-d_0d13492eeffe41cc44956ed431e5bac831e460fdc0a942f858da9511+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{18}
  11. f-d_8b4b09a8ece9e319e976f730c5630b5fa008d09c83c24fd3022621f6+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{19}
  12. f-d_af89d4ac2707cffde585835c904f60b72afcec506d078ae190534e82+IMAGE_TINY+IMAGE_TINY.pngFigure \PageIndex{20}
  13. f-d_9e9ddd708fa1553836a236280ab24fe8e88db325de3c424019d9e5f8+IMAGE_TINY+IMAGE_TINY.png
    Figure \PageIndex{21}

Review (Answers)

To see the Review answers, open this PDF file and look for section 7.10.

Resources

Vocabulary

Term Definition
angle bisector A ray that divides an angle into two congruent angles.
Angle Bisector Theorem The angle bisector theorem states that if a point is on the bisector of an angle, then the point is equidistant from the sides of the angle.
Proportion A proportion is an equation that shows two equivalent ratios.
Ratio A ratio is a comparison of two quantities that can be written in fraction form, with a colon or with the word “to”.

Additional Resources

Interactive Element

Video: Using the Properties of the Triangle Angle Bisector Theorem to Determine Unknown Values

Activities: Proportions with Angle Bisectors Discussion Questions

Study Aids: Proportionality Relationships Study Guide

Real World: Triangle Proportionality


This page titled 7.13: Proportions and Angle Bisectors is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?