Skip to main content
K12 LibreTexts

7.15: Dilation of a Shape

  • Page ID
    5920
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Larger or smaller version of a figure that preserves its shape.

    Dilation

    Two figures are similar if they are the same shape but not necessarily the same size. One way to create similar figures is by dilating. A dilation makes a figure larger or smaller but the new resulting figure has the same shape as the original.

    Dilation: An enlargement or reduction of a figure that preserves shape but not size. All dilations are similar to the original figure.

    Dilations have a center and a scale factor. The center is the point of reference for the dilation and the scale factor tells us how much the figure stretches or shrinks. A scale factor is labeled \(k\). Only positive scale factors, \(k\), will be considered in this text.

    If the dilated image is smaller than the original, then \(0<k<1\).

    If the dilated image is larger than the original, then \(k>1\).

    A dilation, or image, is always followed by a \(′\).

    Label It Say It
    \(′\) “prime” (copy of the original)
    \(A′\) “a prime” (copy of point \(A\))
    \(A′′\) “a double prime” (second copy)

    What if you enlarged or reduced a triangle without changing its shape? How could you find the scale factor by which the triangle was stretched or shrunk?

    Example \(\PageIndex{1}\)

    Find the perimeters of \(KLMN\) and \(K′L′M′N′\). Compare this ratio to the scale factor.

    f-d_f0c1594c2bbb61c374ba5c3748f8b381cad830b33ed6e181f953b74f+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    Solution

    The perimeter of \(KLMN=12+8+12+8=40\). The perimeter of \(K′L′M′N′=24+16+24+16=80\). The ratio is 80:40, which reduces to 2:1, which is the same as the scale factor.

    Example \(\PageIndex{2}\)

    f-d_2709ad03596ee418429052b007d74e83ca7ac308d93121f5b8770ae1+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    \(\Delta ABC\) is a dilation of \(\Delta DEF\). If P is the center of dilation, what is the scale factor?

    Solution

    f-d_570c7109d64e5751cfd19be0d28f8594b0a9b819ef9a85c0f983daca+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Because \(\Delta ABC\) is a dilation of \(\Delta DEF\), then \(\Delta ABC\sim \Delta DEF\). The scale factor is the ratio of the sides. Since \(\Delta ABC\) is smaller than the original, \(\Delta DEF\), the scale factor is going to be less than one, \(\dfrac{12}{20}=\dfrac{3}{5}\).

    If \(\Delta DEF\) was the dilated image, the scale factor would have been \(\dfrac{5}{3}\).

    Example \(\PageIndex{3}\)

    The center of dilation is \(P\) and the scale factor is 3.

    Find \(Q′\).

    f-d_394fbefb3f6f9cfff1510d015488fe115a16e0345bb09484533dfade+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Solution

    If the scale factor is 3 and \(Q\) is 6 units away from \(P\), then \(Q′\) is going to be \(6\times 3=18\) units away from \(P\). The dilated image will be on the same line as the original image and center.

    f-d_38b563dc51e584a7af5c32142b6a9ded9af7ab7ea9e3cd5dbdb2a693+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    Example \(\PageIndex{4}\)

    Using the picture above, change the scale factor to 13.

    Find \(Q′′\) using this new scale factor.

    Solution

    The scale factor is \(\dfrac{1}{3}\), so \(Q′′\) is going to be \(6\times \dfrac{1}{3}=2\) units away from \(P\). \(Q′′\) will also be collinear with \(Q\) and center.

    f-d_4e1487a277f7f9bc945c85f6a2bb46034f63b80376498f10c768a94b+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)

    Example \(\PageIndex{5}\)

    \(KLMN\) is a rectangle. If the center of dilation is \(K\) and \(k=2\), draw \(K′L′M′N′\).

    f-d_f0c1594c2bbb61c374ba5c3748f8b381cad830b33ed6e181f953b74f+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)

    Solution

    If \(K\) is the center of dilation, then \(K\) and \(K′\) will be the same point. From there, \(L′\) will be 8 units above \(L\) and \(N′\) will be 12 units to the right of \(N\).

    f-d_2709ad03596ee418429052b007d74e83ca7ac308d93121f5b8770ae1+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{8}\)

    Review

    For the given shapes, draw the dilation, given the scale factor and center.

    1. \(k=3.5\), center is \(A\)
    f-d_f2a8e26a77124b145795e9d848ad2478e85efe43293e46adc0eff5fc+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{9}\)
    1. \(k=2\), center is \(D\)
    f-d_108b68250a18fce762d94730f47952cd2cf24462d72ddf62232bdfdc+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{10}\)
    1. \(k=\dfrac{3}{4}\), center is \(A\)
    f-d_1ab555015b90eb37e7cc4bd9035d20e0912e7c39c989f31d3dc91546+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{11}\)
    1. \(k=\dfrac{2}{5}\), center is A\)
    f-d_6500b50fe4c5a43981651b9c73eedb302835a029f489427b36cb28b4+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{12}\)

    In the four questions below, you are told the scale factor. Determine the dimensions of the dilation. In each diagram, the black figure is the original and \(P\) is the center of dilation.

    1. \(k=4\)
    f-d_02235f9cb7eed8859781462896c6a07ae771af5fa9e07b71414b98a6+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{13}\)
    1. \(k=\dfrac{1}{3}\)
    f-d_1894d916a18925db05c0c57b81ef99e240e87c0ca40eb929b4e73177+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{14}\)
    1. \(k=2.5\)
    f-d_b2b9fa8004034eaf0b5a3485c960d2389725e08abcc66357bb0a5fec+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{15}\)
    1. \(k=\dfrac{1}{4}\)
    f-d_1bd392be823bdb1d8daaf8bf4a52d340d710df7f0bdc2bfebb5b0648+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{16}\)

    In the three questions below, find the scale factor, given the corresponding sides. In each diagram, the black figure is the original and \(P\) is the center of dilation.

    1. f-d_c18591f06e677df57a1525315d06b1cc18675bb98a861e46e055e55b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{17}\)
    2. f-d_65f303d08f54846cc0e370dc11878fe0cbc93432f474a7e39379652a+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{18}\)
    3. f-d_e243765457f99a2c482c54227a72649663b6e419c9c60fb4855aaa75+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{19}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 7.11.

    Vocabulary

    Term Definition
    Dilation To reduce or enlarge a figure according to a scale factor is a dilation.
    Quadrilateral A quadrilateral is a closed figure with four sides and four vertices.
    Ratio A ratio is a comparison of two quantities that can be written in fraction form, with a colon or with the word “to”.
    Scale Factor A scale factor is a ratio of the scale to the original or actual dimension written in simplest form.
    Transformation A transformation moves a figure in some way on the coordinate plane.
    Vertex A vertex is a point of intersection of the lines or rays that form an angle.
    Rigid Transformation A rigid transformation is a transformation that preserves distance and angles, it does not change the size or shape of the figure.

    Additional Resources

    Interactive Element

    Video: Dilation Principles - Basic

    Activities: Dilation Discussion Questions

    Study Aids: Types of Transformations Study Guide

    Practice: Dilation of a Shape

    Real World: The CSI Effect


    This page titled 7.15: Dilation of a Shape is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?