Skip to main content
K12 LibreTexts

7.7: AA Similarity

  • Page ID
    5302
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Two triangles are similar if two pairs of angles are congruent.

    AA Similarity Postulate

    By definition, two triangles are similar if all their corresponding angles are congruent and their corresponding sides are proportional. It is not necessary to check all angles and sides in order to tell if two triangles are similar. In fact, if you only know that two pairs of corresponding angles are congruent that is enough information to know that the triangles are similar. This is called the AA Similarity Postulate.

    AA Similarity Postulate: If two angles in one triangle are congruent to two angles in another triangle, then the two triangles are similar.

    f-d_5c0b63785ff154e1ecdc4c52b574e558f2a436c5e7f4f225146fcd67+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    If \(\angle A\cong \angle Y\) and \(\angle B\cong \angle Z\), then \(\Delta ABC\sim \Delta YZX\).

    What if you were given a pair of triangles and the angle measures for two of their angles? How could you use this information to determine if the two triangles are similar?

    Example \(\PageIndex{1}\)

    Are the triangles similar? If so, write a similarity statement.

    f-d_ea0d8f73c36e2f39e821e03876af25fb8541635474c14660a5e6f71d+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Solution

    Yes, there are three similar triangles that each have a right angle. \(DGE\sim FGD\sim FDE\).

    Example \(\PageIndex{2}\)

    Are the triangles similar? If so, write a similarity statement.

    f-d_e05fd8ae759ca9daa901b9b151cb124fd242dbaef4f9cd7e3c00d073+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Solution

    By the reflexive property, \(\angle H\cong \angle H\). Because the horizontal lines are parallel, \(\angle L\cong \angle K\) (corresponding angles). So yes, there is a pair of similar triangles. \(HLI\sim HKJ\).

    Example \(\PageIndex{3}\)

    Determine if the following two triangles are similar. If so, write the similarity statement.

    f-d_d0975a25ae10f6d0beb83d22d83b8ee09e789eb805f31104a3e91326+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Solution

    Compare the angles to see if we can use the AA Similarity Postulate. Using the Triangle Sum Theorem, \(m\angle G=48^{\circ}\) and \(m\angle M=30^{\circ}\). So, \(\angle F\cong \angle M\), \(\angle E\cong \angle L\) and \(\angle G\cong \angle N\) and the triangles are similar. \(\Delta FEG\sim \Delta MLN\).

    Example \(\PageIndex{4}\)

    Determine if the following two triangles are similar. If so, write the similarity statement.

    f-d_c08299571abafada8bdc53d841d9f533811191e794d726b43b2a57d0+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    Solution

    Compare the angles to see if we can use the AA Similarity Postulate. Using the Triangle Sum Theorem, \(m\angle C=39^{\circ}\) and \(m\angle F=59^{\circ}\). \(m\angle C\neq m\angle F\), So \(\Delta ABC\) and \(\Delta DEF\) are not similar.

    Example \(\PageIndex{5}\)

    \(\Delta LEG\sim \Delta MAR\) by AA. Find \(GE\) and \(MR\).

    f-d_22c12f12d44a4c4a536dd8cc23b24de04607216eccd9c9c0fa84d187+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)

    Solution

    Set up a proportion to find the missing sides.

    \(\begin{array}{rlrl}
    \frac{24}{32} & =\frac{M R}{20} & \frac{24}{32} & =\frac{21}{G E} \\
    480 & =32 M R & 24 G E & =672 \\
    15 & =M R & G E&=28
    \end{array}\)

    When two triangles are similar, the corresponding sides are proportional. But, what are the corresponding sides? Using the triangles from this example, we see how the sides line up in the diagram to the right.

    f-d_32d8506ba8e6a0609bce521109c0a1e80f31fa004a755f512fdbcd5b+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)

    Review

    Use the diagram to complete each statement.

    f-d_b7337a46ccc14b66fa3109567cf774620ef697bae8ae72b6485071e1+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{8}\)
    1. \(\Delta SAM\sim \Delta ______\)
    2. \(\dfrac{SA}{?}=\dfrac{SM}{?}=\dfrac{?}{RI}\)
    3. \(SM = ______\)
    4. \(TR = ______\)
    5. \(\dfrac{9}{?}=\dfrac{?}{8}\)

    Answer questions 6-9 about trapezoid \(ABCD\).

    f-d_07173d10e510e3fa66c0daa7771a325fca2023f8b36ee93aaa5898a6+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{9}\)
    1. Name two similar triangles. How do you know they are similar?
    2. Write a true proportion.
    3. Name two other triangles that might not be similar.
    4. If \(AB=10\), \(AE=7\), and \(DC=22\), find \(AC\). Be careful!

    Use the triangles to the left for questions 10-14.

    \(AB=20\), \(DE=15\), and \(BC=k\).

    f-d_941acc5da8d73e9d817c4459aa5a87e334bfafbf288266fec44fd822+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{10}\)
    1. Are the two triangles similar? How do you know?
    2. Write an expression for \(FE\) in terms of \(k\).
    3. If \(FE=12\), what is \(k\)?
    4. Fill in the blanks: If an acute angle of a _______ triangle is congruent to an acute angle in another ________ triangle, then the two triangles are _______.
    5. Writing How do congruent triangles and similar triangles differ? How are they the same?

    Are the following triangles similar? If so, write a similarity statement.

    1. f-d_530004c598e805eeeea6abb9bed2a11d3be5ee4b3a02cb560ec07ec4+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{11}\)
    2. f-d_79560d0bb243f22fd559544b1cdae88cdf5052959018a17ebd6cbf16+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{12}\)
    3. f-d_f8ed4e94dad844db55ec21f2aee46742700e95eda0b9b4667ed5849b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{13}\)
    4. f-d_f8baa75122abba0a216a457b4d5d92abd233f2bfdd3762638e103623+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{14}\)
    5. f-d_64e8b2ae450de1d8cccd16f15dcf827a12ed00157268714c3d6b1a40+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{15}\)
    6. f-d_4875045fba2aa15b6d807ff3bc0a9fee91c620def8b3bda23913834b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{16}\)
    7. f-d_4084ca0711a179fd8e0f3f3f89d35e77a9007c51ff1aff4e4a4eb88a+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{17}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 7.4.

    Resources

    Vocabulary

    Term Definition
    similar triangles Two triangles where all their corresponding angles are congruent (exactly the same) and their corresponding sides are proportional (in the same ratio).
    AA Similarity Postulate If two angles in one triangle are congruent to two angles in another triangle, then the two triangles are similar.
    Dilation To reduce or enlarge a figure according to a scale factor is a dilation.
    Triangle Sum Theorem The Triangle Sum Theorem states that the three interior angles of any triangle add up to 180 degrees.
    Rigid Transformation A rigid transformation is a transformation that preserves distance and angles, it does not change the size or shape of the figure.

    Additional Resources

    Interactive Element

    Video: Congruent and Similar Triangles

    Activities: AA Similarity Discussion Questions

    Study Aids: Polygon Similarity Study Guide

    Practice: AA Similarity

    Real World: Crazy Quilt


    This page titled 7.7: AA Similarity is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?