Skip to main content
K12 LibreTexts

7.8: SSS Similarity

  • Page ID
    5303
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Triangles are similar if their corresponding sides are proportional.

    SSS Similarity Theorem

    By definition, two triangles are similar if all their corresponding angles are congruent and their corresponding sides are proportional. It is not necessary to check all angles and sides in order to tell if two triangles are similar. In fact, if you know only that all sides are proportional, that is enough information to know that the triangles are similar. This is called the SSS Similarity Theorem.

    SSS Similarity Theorem: If all three pairs of corresponding sides of two triangles are proportional, then the two triangles are similar.

    f-d_4d5e57624b81bd2d58a82efc002be6bd3686adb0894df5512f01d0cb+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    If \(\dfrac{AB}{YZ}=\dfrac{BC}{ZX}=\frac{AC}{XY}\), then \(\Delta ABC\sim \Delta YZX\).

    What if you were given a pair of triangles and the side lengths for all three of their sides? How could you use this information to determine if the two triangles are similar?

    For Examples 1 and 2, use the following diagram:

    f-d_39018020a9687fd63b81d2d4e4d1ab6c7db7909033218747a8635564+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Example \(\PageIndex{1}\)

    Is \(\Delta DEF\sim \Delta GHI\)?

    Is \(\dfrac{15}{30}=\dfrac{16}{33}=\dfrac{18}{36}\)?

    Solution

    \(\dfrac{15}{30}=\dfrac{1}{2}\), \(\dfrac{16}{33}=\dfrac{16}{33}\), and \(\dfrac{18}{36}=\dfrac{1}{2}\). \(\dfrac{1}{2}\neq \dfrac{16}{33}\), \(\Delta DEF\) is not similar to \(\Delta GHI\).

    Example \(\PageIndex{2}\)

    Is \(\Delta ABC\sim \Delta GHI\)?

    Is \(\dfrac{20}{30}=\dfrac{22}{33}=\dfrac{24}{36}\)?

    Solution

    \(\dfrac{20}{30}=dfrac{2}{3}\), \(\dfrac{22}{33}=\dfrac{2}{3}\), and \(\dfrac{24}{36}=\dfrac{2}{3}\). All three ratios reduce to \(\dfrac{2}{3}\), \(\Delta ABC\sim \Delta GHI\).

    Example \(\PageIndex{3}\)

    Determine if the following triangles are similar. If so, explain why and write the similarity statement.

    f-d_a581a8b2d87a533c859fa44358d11f9e7df1d2ac14afa27fb8bd10fb+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Solution

    We will need to find the ratios for the corresponding sides of the triangles and see if they are all the same. Start with the longest sides and work down to the shortest sides.

    \(\begin{aligned} \dfrac{BC}{FD}&=\dfrac{28}{20}=\dfrac{7}{5} \\ \dfrac{BA}{FE}&=\dfrac{21}{15}=\dfrac{7}{5} \\ \dfrac{AC}{ED}&=\dfrac{14}{10}=\dfrac{7}{5}\end{aligned}\)

    Since all the ratios are the same, \(\Delta ABC\sim \Delta EFD\) by the SSS Similarity Theorem.

    Example \(\PageIndex{4}\)

    Find \(x and \(y, such that \(\Delta ABC\sim \Delta DEF\).

    f-d_318f92ae3f249e1794d219d6725eeb6044d3fdda81bcfa2d78d2a01f+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{4}\)

    Solution

    According to the similarity statement, the corresponding sides are: \(\dfrac{AB}{DE}=\dfrac{BC}{EF}=\dfrac{AC}{DF}\). Substituting in what we know, we have \(\dfrac{9}{6}=\dfrac{4x−1}{10}=\dfrac{18}{y}\).

    \(\begin{aligned}
    \frac{9}{6} &=\frac{4 x-1}{10} & \frac{9}{6} &=\frac{18}{y} \\
    9(10) &=6(4 x-1) & & 9 y=18(6) \\
    90 &=24 x-6 & & 9 y=108 \\
    96 &=24 x & & y=12 \\
    x &=4 &
    \end{aligned}\)

    Example \(\PageIndex{5}\)

    Determine if the following triangles are similar. If so, explain why and write the similarity statement.

    f-d_c6e3b786fdc6105d64b086efcfa48c529b91cbb087f6ba3bc60b9f9f+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{5}\)

    Solution

    We will need to find the ratios for the corresponding sides of the triangles and see if they are all the same. Start with the longest sides and work down to the shortest sides.

    \(\begin{aligned} \dfrac{AC}{ED}&=\dfrac{21}{35}=\dfrac{3}{5} \\ \dfrac{BC}{FD}&=\dfrac{15}{25}=\dfrac{3}{5} \\ \dfrac{AB}{EF}&=\dfrac{10}{20}=\dfrac{1}{2} \end{aligned}\)

    Since the ratios are not all the same, the triangles are not similar.

    Review

    Fill in the blanks.

    1. If all three sides in one triangle are __________________ to the three sides in another, then the two triangles are similar.
    2. Two triangles are similar if the corresponding sides are _____________.

    Use the following diagram for questions 3-5. The diagram is to scale.

    f-d_9130802ab0568151f40d994490dacec8d13ff32f2e4e30a23dbfa2f2+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{6}\)
    1. Are the two triangles similar? Explain your answer.
    2. Are the two triangles congruent? Explain your answer.
    3. What is the scale factor for the two triangles?

    Fill in the blanks in the statements below. Use the diagram to the left.

    f-d_46448bff59285ffce892d8fd8814c3c86c57264b403abddf3cdf5da8+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{7}\)
    1. \(\Delta ABC\sim \Delta _____\)
    2. \(\dfrac{AB}{?}=\dfrac{BC}{?}=\dfrac{AC}{?}\)
    3. If \(\Delta ABC\) had an altitude, \(AG=10\), what would be the length of altitude \(\overline{DH}\)?
    4. Find the perimeter of \(\Delta ABC\) and \(\Delta DEF\). Find the ratio of the perimeters.

    Use the diagram to the right for questions 10-15.

    f-d_eb327280443709d0cdccc89226f4037cb49b2dc90979c44e058cc4f1+IMAGE_TINY+IMAGE_TINY.pngFigure \(\PageIndex{8}\)
    1. \(\Delta ABC\sim \Delta _____\)
    2. Why are the two triangles similar?
    3. Find \(ED\).
    4. \(\dfrac{BD}{?}=\dfrac{?}{BC}=\dfrac{DE}{?}\)
    5. Is \(\dfrac{AD}{DB}=\dfrac{CE}{EB}\) true?
    6. Is \(\dfrac{AD}{DB}=\dfrac{AC}{DE}\) true?

    Find the value of the missing variable(s) that makes the two triangles similar.

    1. f-d_a1fb4654c638c61ccd06b72ef6b87589a40370665b8b8343a80fb27b+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{9}\)

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 7.6.

    Resources

    Vocabulary

    Term Definition
    AAA Similarity Theorem AAA Similarity Theorem states that if all three pairs of corresponding sides of two triangles are proportional, then the two triangles are similar.
    Congruent Congruent figures are identical in size, shape and measure.
    Dilation To reduce or enlarge a figure according to a scale factor is a dilation.
    Ratio A ratio is a comparison of two quantities that can be written in fraction form, with a colon or with the word “to”.
    SSS SSS means side, side, side and refers to the fact that all three sides of a triangle are known in a problem.
    Rigid Transformation A rigid transformation is a transformation that preserves distance and angles, it does not change the size or shape of the figure.

    Additional Resources

    Interactive Element

    Video: Congruent and Similar Triangles

    Activities: SSS Similarity Discussion Questions

    Study Aids: Polygon Similarity Study Guide

    Practice: SSS Similarity

    Real World: Crazy Quilt


    This page titled 7.8: SSS Similarity is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?