Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
K12 LibreTexts

7.11: Inscribed Similar Triangles

( \newcommand{\kernel}{\mathrm{null}\,}\)

Division of a right triangle into similar triangles using an altitude.

Inscribed Similar Triangles Theorem

Remember that if two objects are similar, their corresponding angles are congruent and their sides are proportional in length. The altitude of a right triangle creates similar triangles.

Inscribed Similar Triangles Theorem: If an altitude is drawn from the right angle of any right triangle, then the two triangles formed are similar to the original triangle and all three triangles are similar to each other.

In ΔADB, mA=90 and ¯AC¯DB:

f-d_8f94a81f6d6e18627a24bb14ed0a48e6ac658f490bb506661efa2f6a+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.1

So, ΔADBΔCDAΔCAB:

f-d_59b4e955d5eee8ab9073fb5e137b4abda1ecc9bb702a2196b47e1018+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.2

This means that all of the corresponding sides are proportional. You can use this fact to find missing lengths in right triangles.

What if you drew a line from the right angle of a right triangle perpendicular to the side that is opposite that angle? How could you determine the length of that line?

Example 7.11.1

Find the value of x.

f-d_d12f225661a2c00f86576c2273e012eb8561fdc1b393434047cac757+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.3

Solution

Set up a proportion.

 shorter leg in ΔSVT shorter leg in ΔRST= hypotenuse in ΔSVT hypotenuse in ΔRST4x=x20x2=80x=80=45

Example 7.11.2

Now find the value of y in ΔRST above.

Solution

Use the Pythagorean Theorem.

y2+(45)2=202y2+80=400y2=320y=320=85

Example 7.11.3

Find the value of x.

f-d_2acb70c56937418b687c8657c7106c5c6267b8168cbf7e8b9e7991f2+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.4

Solution

Separate the triangles to find the corresponding sides.

f-d_54b7769afb1783c429453d3716496c24f4f8610049e8bf7c7568dfbb+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.5

Set up a proportion.

 shorter leg in ΔEDG shorter leg in ΔDFG= hypotenuse in ΔEDG hypotenuse in ΔDFG6x=10848=10x4.8=x

Example 7.11.4

Find the value of x.

f-d_239d4338244f87d20932f26cf26285ee377c3d51765c396884f36ef5+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.6

Solution

Set up a proportion.

 shorter leg of smallest Δ shorter leg of middle Δ= longer leg of smallest Δ longer leg of middle Δ9x=x27x2=243x=243=93

Example 7.11.5

Find the values of x and y.

f-d_0cb387c3c521bae9dcac7a60aa53dadc08e59d31b735b70af2d1c5d9+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.7

Separate the triangles. Write a proportion for x.

Solution

f-d_b6f2d6398038121a06ccacb83f202bd42595a8d774a6aa949f515b5d+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.8

20x=x35x2=2035x=2035x=107

Set up a proportion for y. Or, now that you know the value of x\) you can use the Pythagorean Theorem to solve for y. Use the method you feel most comfortable with.

15y=y35(107)2+y2=352y2=1535700+y2=1225y=1535y=525=521y=521

Review

Fill in the blanks.

f-d_2a16e1e6d98896e8f9d88a72551fc8c9c6e6338e19febd47251a3b98+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.9
  1. \boldsymbol{\Delta BAD\sim \Delta ______ \sim \Delta ______}
  2. BC?=?CD
  3. BCAB=AB?
  4. ?AD=ADBD

Write the similarity statement for the right triangles in each diagram.

  1. f-d_cfef84eb13bbdfdb6ed9c403d93f987a791fc5f1782db8373e7b4164+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.10
  2. f-d_82d536fd984657febfcbd62f5c2bc49357e301279d61a5f879e3dbe6+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.11

Use the diagram to answer questions 7-10.

f-d_fdd82fa5d49de19b0bffde9f65050c1fd2c51e86e9c62cb5517c0cb6+IMAGE_TINY+IMAGE_TINY.png
Figure 7.11.12
  1. Write the similarity statement for the three triangles in the diagram.
  2. If JM=12 and ML=9, find KM.
  3. Find JK.
  4. Find KL.

Find the length of the missing variable(s). Simplify all radicals.

  1. f-d_96ea0b1eeb54e0d687d61dcd83299376553c50edde5d93a17ac7bbfb+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.13
  2. f-d_5ca2aefe8e9c10073191b5f24e12090efe6847dbcd339f3acf396f57+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.14
  3. f-d_ef62b478837977549c1f746020c8108732cf71423d2bb94a9c8993f7+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.15
  4. f-d_d72979bd42e7d3681862c66ea3b460bee01d47320ad99a698bcb581a+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.16
  5. f-d_f9c86df9b8d84bf894883df8a12b77c99b7130b205eb39da3448d93e+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.17
  6. f-d_165e624ea2a1671cd8d31911e47a782e5dfd9fee47ab30ac90e5e4ec+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.18
  7. f-d_eb67a311015d121d3b0c3c804268b636c68bce4c766b8c63d5c374bc+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.19
  8. f-d_db9a3eaa40a683422846e859a3c0158ba1d465b54efe015b21b33b02+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.20
  9. f-d_2769805332ca338fe00448a0fc2d5de0c84a35a1adc36bcdf8c6d9b9+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.21
  10. f-d_62d431f72047e42b700f265efeac567f1b8a2489103923db6f68f3e3+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.22
  11. f-d_8c4a64125bdec9f8887736303881304d83a0dbacce0a217a06fbf26a+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.23
  12. f-d_b7beb9e8b653d5b387a1f3c5dc80a8a847e26c1d8393f283ee37e44d+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.24
  13. Fill in the blanks of the proof for the Inscribed Similar Triangles Theorem.
    f-d_2a16e1e6d98896e8f9d88a72551fc8c9c6e6338e19febd47251a3b98+IMAGE_TINY+IMAGE_TINY.png
    Figure 7.11.25

Given: ΔABD with ¯AC¯DB and DAB is a right angle.

Prove: ΔABDΔCBAΔCAD

Statement Reason
1. 1. Given
2. DCA and ACB are right angles 2.
3. DABDCAACB 3.
4. 4. Reflexive PoC
5. 5. AA Similarity Postulate
6. BB 6.
7. ΔCBAΔABD 7.
8. ΔCADΔCBA 8.

Review (Answers)

To see the Review answers, open this PDF file and look for section 8.4.

Vocabulary

Term Definition
Inscribed Similar Triangles Theorem The Inscribed Similar Triangles Theorem states that if an altitude is drawn from the right angle of any right triangle, then the two triangles formed are similar to the original triangle and all three triangles are similar to each other.
Perpendicular Perpendicular lines are lines that intersect at a 90∘ angle. The product of the slopes of two perpendicular lines is -1.
Proportion A proportion is an equation that shows two equivalent ratios.
Pythagorean Theorem The Pythagorean Theorem is a mathematical relationship between the sides of a right triangle, given by a2+b2=c2, where a and b are legs of the triangle and c is the hypotenuse of the triangle.

Additional Resources

Video: Inscribed Similar Triangles Principles - Basic

Activities: Inscribed Similar Triangles Discussion Questions

Study Aids: Right Triangle Similarity Study Guide

Practice: Inscribed Similar Triangles

Real World: Inscribed Similar Triangles


This page titled 7.11: Inscribed Similar Triangles is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

CK-12 Foundation
LICENSED UNDER
CK-12 Foundation is licensed under CK-12 Curriculum Materials License

Support Center

How can we help?