Skip to main content
K12 LibreTexts

4.10: Congruence Statements

  • Page ID
    4807
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Corresponding angles and sides of congruent triangles are congruent.

    When stating that two triangles are congruent, the corresponding parts must be written in the same order. For example, if we know that \(\Delta ABC\) and \(\Delta LMN\) are congruent then we know that:

    f-d_54cad6455ec7768d0fd6f04f0279cc83c94be645e79de70011f9f11e+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{1}\)

    Notice that the congruent sides also line up within the congruence statement.

    \(\overline{AB} \cong \overline{LM}\), \(\overline{BC} \cong \overline{MN}\), \(\overline{AC} \cong \overline{LN}\)

    We can also write this congruence statement five other ways, as long as the congruent angles match up. For example, we can also write \(\Delta ABC\cong \Delta LMN\) as:

    \(\begin{align*} \Delta ACB\cong \Delta LNM &\qquad& \Delta BCA\cong \Delta MNL &\qquad& \Delta BAC\cong \Delta MLN \\ \Delta CBA\cong \Delta NML &\qquad& \Delta CAB\cong \Delta NLM \end{align*}\)

    What if you were told that \(\Delta FGH\cong \Delta XYZ\)? How could you determine which side in \(\Delta XYZ\) is congruent to \(\overline{GH}\) and which angle is congruent to \(\angle F\)?

    Example \(\PageIndex{1}\)

    If \(\Delta ABC\cong \Delta DEF\), what else do you know?

    Solution

    From this congruence statement, we know three pairs of angles and three pairs of sides are congruent.

    \(\angle A\cong \angle D,\angle B\cong \angle E\),\angle C\cong \angle F\),

    \(\overline{AB} \cong \overline{DE} , \overline{BC} \cong \overline{EF} , \overline{AC} \cong \overline{DF}\).

    Example \(\PageIndex{2}\)

    If\( \Delta KBP\cong \Delta MRS\), what else do you know?

    Solution

    From this congruence statement, we know three pairs of angles and three pairs of sides are congruent.

    \(\angle K\cong \angle M,\:\angle B\cong \angle R,\:\angle P\cong \angle S\),

    \(\overline{KB} \cong \overline{MR} ,\:\overline{BP} \cong \overline{RS}, \: \overline{KP} \cong \overline{MS}\).

    Example \(\PageIndex{3}\)

    Write a congruence statement for the two triangles below.

    f-d_a7a2bec1d9b3a9314505edf69bfcf149f66f6a624069d39379aed245+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{2}\)

    Solution

    Line up the corresponding angles in the triangles:

    \(\angle R\cong \angle F,\:\angle S\cong \angle E\:and \angle T\cong \angle D\).

    Therefore, one possible congruence statement is \(\Delta RST\cong \angle FED\)

    Example \(\PageIndex{4}\)

    If \(\Delta CAT\cong \Delta DOG\), what else do you know?

    Solution

    From this congruence statement, we know three pairs of angles and three pairs of sides are congruent.

    f-d_db15c6e53da10803ffedb0eb93f0160053e2e2c02b10576839bd8921+IMAGE_TINY+IMAGE_TINY.png
    Figure \(\PageIndex{3}\)

    Example \(\PageIndex{5}\)

    If \(\Delta BUG\cong \Delta ANT\), what angle is congruent to \(\angle N\)?

    Solution

    Since the order of the letters in the congruence statement tells us which angles are congruent, \(\angle N\cong \angle U\) because they are each the second of the three letters.

    Review

    For questions 1-4, determine if the triangles are congruent using the definition of congruent triangles. If they are, write the congruence statement.

    1. f-d_1aacf55daf1835081786dad5cb18d3869b0e3b04eb207b04b27d4b43+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{4}\)
    2. f-d_2c72bca826f55b50536343b9a1fcb9d8370014bb009b6d338167cd8a+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{5}\)
    3. f-d_a242056d69c2f635d8b4421352954d13716f8b3d86a94a04eca28dcc+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{6}\)
    4. f-d_a698bad48f3bf5f22b479400ccccc53a2828971fe6f8ecff03498d5a+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{7}\)
    5. Suppose the two triangles below are congruent. Write a congruence statement for these triangles.
      f-d_bc989aa08632980786b43e338e6f226dc78f9a8ecc8eda1b67f73c75+IMAGE_TINY+IMAGE_TINY.png
      Figure \(\PageIndex{8}\)
    6. Explain how we know that if the two triangles are congruent, then \(\angle B\cong \angle Z\).
    7. If \(\Delta TBS\cong \Delta FAM\), what else do you know?
    8. If \(\Delta PAM\cong \Delta STE\), what else do you know?
    9. If \(\Delta INT\cong \Delta WEB\), what else do you know?
    10. If \(\Delta ADG\cong \Delta BCE\), what angle is congruent to \(\angle G\)?

    Review (Answers)

    To see the Review answers, open this PDF file and look for section 4.4.

    Resources

    Additional Resources

    Video: Introduction to Congruent Triangles

    Activities: Congruence Statements Discussion Questions

    Study Aids: Triangle Congruence Study Guide

    Practice: Congruence Statements

    Real World: Congruent Statements


    This page titled 4.10: Congruence Statements is shared under a CK-12 license and was authored, remixed, and/or curated by CK-12 Foundation via source content that was edited to the style and standards of the LibreTexts platform.

    CK-12 Foundation
    LICENSED UNDER
    CK-12 Foundation is licensed under CK-12 Curriculum Materials License
    • Was this article helpful?